### Online Matching on 3-Uniform Hypergraphs

Sander Borst, Danish Kashaev, Zhuan Khye Koh

CWI Amsterdam

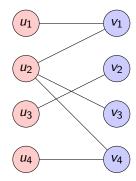
July 23, 2024



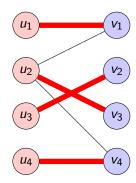




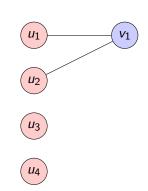
• Bipartite graph  $(U \cup V, E)$ 



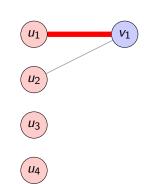
• Bipartite graph  $(U \cup V, E)$ 



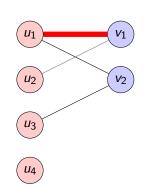
- Bipartite graph  $(U \cup V, E)$
- Offline vertices U given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .



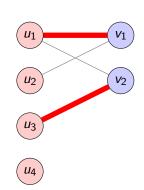
- Bipartite graph  $(U \cup V, E)$
- Offline vertices U given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .



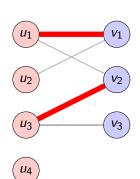
- Bipartite graph  $(U \cup V, E)$
- ullet Offline vertices U given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .



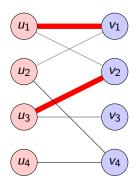
- Bipartite graph  $(U \cup V, E)$
- Offline vertices *U* given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .



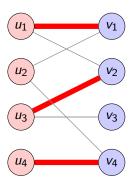
- Bipartite graph  $(U \cup V, E)$
- ullet Offline vertices U given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .



- Bipartite graph  $(U \cup V, E)$
- ullet Offline vertices U given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .

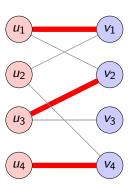


- Bipartite graph  $(U \cup V, E)$
- Offline vertices *U* given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .



- Bipartite graph  $(U \cup V, E)$
- Offline vertices *U* given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .

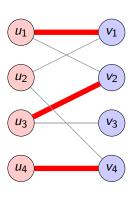
$$\mathsf{Competitive} \ \mathsf{Ratio} = \frac{|\mathsf{Found} \ \mathsf{matching}|}{|\mathsf{OPT}|}$$



- Bipartite graph  $(U \cup V, E)$
- Offline vertices *U* given in advance
- Online vertices V arrive one by one
- When  $v \in V$  arrives, it reveals its incident edges. An algorithm can then (irrevocably) match v by picking some  $(u, v) \in E$ .

$$\mathsf{Competitive} \ \mathsf{Ratio} = \frac{|\mathsf{Found} \ \mathsf{matching}|}{|\mathsf{OPT}|}$$

$$=\frac{3}{4}$$



#### GREEDY

when  $v \in V$  arrives:

pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

#### GREEDY

when  $v \in V$  arrives:

pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### RANKING [KVV'90]

Pick a random permutation  $\boldsymbol{\pi}$  on  $\boldsymbol{U}$ 

when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 

#### GREEDY

when  $v \in V$  arrives:

pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 

Ranking is  $1 - 1/e \approx 0.63$ -competitive in expectation

 $\widehat{u_1}$ 

 $u_2$ 

 $\left( u_{3}\right)$ 

 $u_4$ 

#### GREEDY

when  $v \in V$  arrives:

pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 

Ranking is  $1-1/e \approx 0.63$ -competitive in expectation

#3 (

#1 (**u**z

⊭4 (*u*₃

#2

#### GREEDY

when  $v \in V$  arrives:

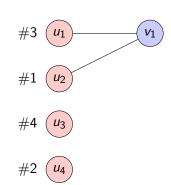
pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 



#### GREEDY

when  $v \in V$  arrives:

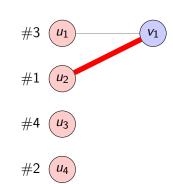
pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 



#### GREEDY

when  $v \in V$  arrives:

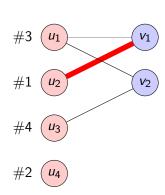
pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### RANKING [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 



#### GREEDY

when  $v \in V$  arrives:

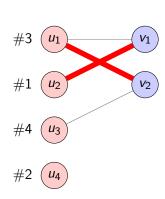
pick an arbitrary available edge (u,v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 



#### GREEDY

when  $v \in V$  arrives:

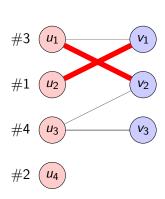
pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### RANKING [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 



#### GREEDY

when  $v \in V$  arrives:

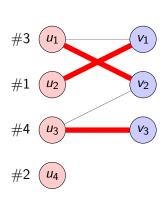
pick an arbitrary available edge (u,v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 



#### GREEDY

when  $v \in V$  arrives:

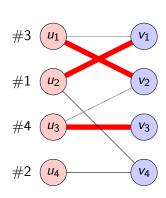
pick an arbitrary available edge (u,v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on U when  $v \in V$  arrives:

match v to an available  $u \in U$  with lowest value  $\pi(u)$ 



#### GREEDY

when  $v \in V$  arrives:

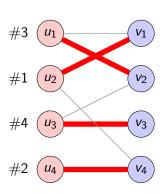
pick an arbitrary available edge (u, v)

GREEDY is 1/2-competitive.

### Ranking [KVV'90]

Pick a random permutation  $\pi$  on Uwhen  $v \in V$  arrives: match v to an available  $u \in U$  with

lowest value  $\pi(u)$ 



$$\max \sum_{e \in E} x_e$$
 
$$\sum_{e \in \delta(v)} x_e \le 1 \quad \forall v \in U \cup V$$
 
$$x_e \ge 0 \quad \forall e \in E$$

Competitive Ratio := 
$$\frac{\sum_{e} x_{e}}{\mathsf{OPT}_{LP}}$$

$$\widehat{u_1}$$

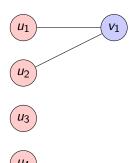


$$\left( u_{3}\right)$$

$$\left( u_{4}\right)$$

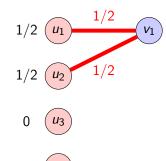
$$egin{aligned} \max \sum_{e \in E} x_e \ & \sum_{e \in \delta(v)} x_e \leq 1 \quad orall v \in U \cup V \ & x_e \geq 0 \quad orall e \in E \end{aligned}$$

Competitive Ratio := 
$$\frac{\sum_{e} x_{e}}{\mathsf{OPT}_{LP}}$$



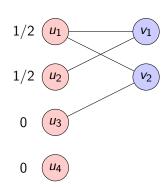
$$egin{aligned} \max \sum_{e \in E} x_e \ & \sum_{e \in \delta(v)} x_e \leq 1 \quad orall v \in U \cup V \ & x_e \geq 0 \quad orall e \in E \end{aligned}$$

Competitive Ratio := 
$$\frac{\sum_{e} x_{e}}{OPT_{IP}}$$



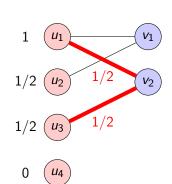
$$egin{aligned} \max \sum_{e \in \mathcal{E}} x_e \ & \sum_{e \in \delta(v)} x_e \leq 1 \quad orall v \in \mathit{U} \cup \mathit{V} \ & x_e \geq 0 \quad orall e \in \mathit{E} \end{aligned}$$

Competitive Ratio := 
$$\frac{\sum_{e} x_{e}}{OPT_{IP}}$$



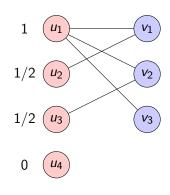
$$egin{aligned} \max \sum_{e \in E} x_e \ & \sum_{e \in \delta(v)} x_e \leq 1 \quad orall v \in U \cup V \ & x_e \geq 0 \quad orall e \in E \end{aligned}$$

Competitive Ratio := 
$$\frac{\sum_{e} x_{e}}{OPT_{IP}}$$



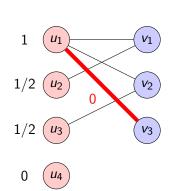
$$egin{aligned} \max \sum_{e \in E} x_e \ & \sum_{e \in \delta(v)} x_e \leq 1 \quad orall v \in U \cup V \ & x_e \geq 0 \quad orall e \in E \end{aligned}$$

Competitive Ratio := 
$$\frac{\sum_{e} x_{e}}{OPT_{IP}}$$



$$egin{aligned} \max \sum_{e \in E} x_e \ & \sum_{e \in \delta(v)} x_e \leq 1 \quad orall v \in U \cup V \ & x_e \geq 0 \quad orall e \in E \end{aligned}$$

Competitive Ratio := 
$$\frac{\sum_{e} x_{e}}{OPT_{IP}} = \frac{2}{3}$$



#### Algorithm: Waterfilling (Primal-dual)

Keep track of the load  $\ell_u := \sum_{e \in \delta(u)} x_e$  for every offline  $u \in U$  when  $v \in V$  arrives:

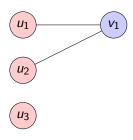






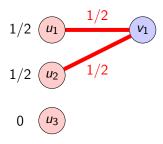
#### Algorithm: Waterfilling (Primal-dual)

Keep track of the load  $\ell_u := \sum_{e \in \delta(u)} x_e$  for every offline  $u \in U$  when  $v \in V$  arrives:



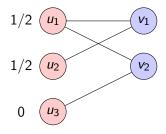
### Algorithm: Waterfilling (Primal-dual)

Keep track of the load  $\ell_u := \sum_{e \in \delta(u)} x_e$  for every offline  $u \in U$  when  $v \in V$  arrives:



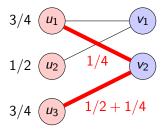
#### Algorithm: Waterfilling (Primal-dual)

Keep track of the load  $\ell_u := \sum_{e \in \delta(u)} x_e$  for every offline  $u \in U$  when  $v \in V$  arrives:



#### Algorithm: Waterfilling (primal-dual)

Keep track of the load  $\ell_u := \sum_{e \in \delta(u)} x_e$  for every offline  $u \in U$  when  $v \in V$  arrives:

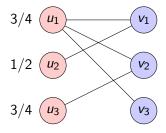


# Fractional Bipartite Matching

### Algorithm: Waterfilling (Primal-dual)

Keep track of the load  $\ell_u := \sum_{e \in \delta(u)} x_e$  for every offline  $u \in U$  when  $v \in V$  arrives:

continuously increase  $x_{(u,v)}$  for the offline nodes with minimal loads  $\ell_u$  while satisfying the degree constraints

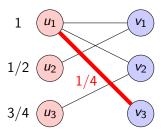


# Fractional Bipartite Matching

### Algorithm: Waterfilling (Primal-dual)

Keep track of the load  $\ell_u := \sum_{e \in \delta(u)} x_e$  for every offline  $u \in U$  when  $v \in V$  arrives:

continuously increase  $x_{(u,v)}$  for the offline nodes with minimal loads  $\ell_u$  while satisfying the degree constraints



# Bipartite Matching

#### Theorem

Waterfilling is  $1 - 1/e \approx 0.63$ -competitive.

### Matching Hardness [KVV'90]

No fractional (or integral) algorithm can do better than 1 - 1/e.

- RANKING is optimal for randomized integral (and thus also fractional) algorithms
- WATERFILLING is optimal for fractional algorithms

# Online Matching

- Lots of applications: advertising, ride-sharing, ...
- Lots of different variants are studied in the literature
  - ▶ Different arrival models
  - Edge-weighted, node-weighted
  - Non-bipartite graphs
  - **.** . . .
- In general, fractional and integral versions do not coincide
- Primal-dual fractional algorithms are a key step in designing competitive online algorithms.

- Hypergraph  $\mathcal{H} = (V, E)$  where each  $e \in E$  has cardinality 3.
- Each hyperedge has 2 offline nodes and 1 online node.
- Vertex arrival: online nodes arrive one by one and reveal all their incident edges at once.

- Hypergraph  $\mathcal{H} = (V, E)$  where each  $e \in E$  has cardinality 3.
- Each hyperedge has 2 offline nodes and 1 online node.
- Vertex arrival: online nodes arrive one by one and reveal all their incident edges at once.

Q.

Why not consider k-uniform hypergraphs?

### Known results (for large k)

- Lower bound for integral: 1/k (achieved by GREEDY)
- Upper bound for integral: 2/k [Tröbst, Udwani 2024]
- Lower bound for fractional:  $\Omega(1/\log k)$  [Buchbinder, Naor 2009]
- Upper bound for fractional:  $O(1/\log k)$  [Buchbinder, Naor 2009].

#### Special cases of this model:

### Online (Bipartite) Matching under Vertex Arrivals

- Optimal competitive ratio:  $1 1/e \approx 0.63$
- Reduction: replace each edge (u, v) by a hyperedge  $(u_1, u_2, v)$ , where  $u_1$  and  $u_2$  are identical copies of u.

#### Online Matching under Edge Arrivals

- Optimal competitive ratio: 1/2 = 0.5
- Reduction: replace each online edge (u, v) by a degree-one online node w with one incident hyperedge (u, v, w).

 $\rightarrow$  unifies both arrival models for graphs

$$\alpha := \frac{e-1}{e+1} \approx 0.46$$

#### Our Results

- $\bullet$  There exists a fractional primal-dual algorithm which is  $\alpha$  competitive.
- No fractional (or integral) algorithm can achieve a competitive ratio better than  $\alpha$ .
- There exists an integral algorithm strictly better than GREEDY (i.e. better than  $1/3 \approx 0.33$ ) when the online nodes have bounded degree.

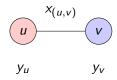
Define 
$$\ell_u := \sum_{e \in \delta(u)} x_e$$
 for every node  $u$ 

$$\begin{split} \max \sum_{e \in E} x_e & \min \sum_{v \in V} y_v \\ \ell_v \leq 1 & \forall v \in V & y_u + y_v \geq 1 & \forall (u, v) \in E \end{split}$$

### Algorithm: Waterfilling (Primal-dual)

#### when $v \in V$ arrives:

continuously increase  $x_{(u,v)}$  for the offline nodes with minimal loads  $\ell_u$ 



Define 
$$\ell_u := \sum_{e \in \delta(u)} x_e$$
 for every node  $u$ 

$$\begin{split} \max \sum_{e \in E} x_e & \min \sum_{v \in V} y_v \\ \ell_v \leq 1 & \forall v \in V & y_u + y_v \geq 1 & \forall (u, v) \in E \end{split}$$

#### Algorithm: Waterfilling (Primal-dual)

#### when $v \in V$ arrives:

continuously increase  $x_{(u,v)}$  for the offline nodes with minimal loads  $\ell_u$ 

$$\begin{array}{ccc}
 & +dx \\
\hline
 & v \\
 & +f(\ell_u)dx & +(1-f(\ell_u))dx
\end{array}$$

$$\max \sum_{e \in E} x_e \qquad \qquad \min \sum_{v \in V} y_v$$

$$\ell_v \le 1 \quad \forall v \in V \qquad \qquad y_u + y_v \ge 1 \quad \forall (u, v) \in E$$

#### Theorem

This algorithm is  $\alpha := 1 - 1/e$  competitive.

$$\max \sum_{e \in E} x_e \qquad \qquad \min \sum_{v \in V} y_v$$
 
$$\ell_v \le 1 \quad \forall v \in V \qquad \qquad y_u + y_v \ge 1 \quad \forall (u, v) \in E$$

#### Theorem

This algorithm is  $\alpha := 1 - 1/e$  competitive.

**Analysis:** Show that the (x, y) pair constructed in the execution satisfies

- $\sum_e x_e = \sum_v y_v$
- $y_u + y_v \ge \alpha \quad \forall (u, v) \in E$

Then  $y/\alpha$  is a feasible dual solution, implying

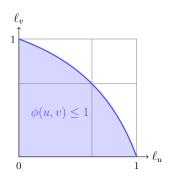
$$\sum_{e} x_{e} = \sum_{v} y_{v} \ge \alpha \mathsf{OPT}_{LP}$$

# Moving to 3-uniform

$$\max \sum_{e \in E} x_e \qquad \min \sum_{v \in V} y_v$$
 
$$\ell_v \le 1 \quad \forall v \in V \qquad \qquad y_u + y_v + y_w \ge 1 \quad \forall (u, v, w) \in E$$

**Challenge**: When an online node w arrives, each incident edge has two offline nodes u, v which could have different loads  $\ell_u$  and  $\ell_v$ .

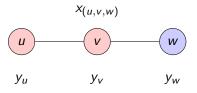
$$\phi(u,v) := f(\ell_u) + f(\ell_v)$$
 where  $f(x) := e^x/(e+1)$ 



### Algorithm: Waterfilling (Primal-dual)

#### when $w \in V$ arrives:

- continuously increase  $x_{(u,v,w)}$  for the pairs (u,v) with lowest  $\phi(u,v)$
- simultaneously increase the dual variables as shown below **while** satisfying  $\phi(u, v) \leq 1$  and the degree constraints.

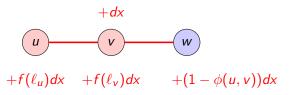


**Note:** Threshold at  $\phi(u, v) \leq 1$  is key and differs from the bipartite case.

### Algorithm: Waterfilling (Primal-dual)

#### when $w \in V$ arrives:

- continuously increase  $x_{(u,v,w)}$  for the pairs (u,v) with lowest  $\phi(u,v)$
- simultaneously increase the dual variables as shown below **while** satisfying  $\phi(u, v) \leq 1$  and the degree constraints.

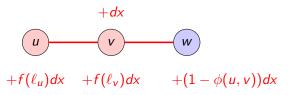


**Note:** Threshold at  $\phi(u, v) \leq 1$  is key and differs from the bipartite case.

### Algorithm: Waterfilling (Primal-dual)

#### when $w \in V$ arrives:

- continuously increase  $x_{(u,v,w)}$  for the pairs (u,v) with lowest  $\phi(u,v)$
- simultaneously increase the dual variables as shown below **while** satisfying  $\phi(u, v) \leq 1$  and the degree constraints.



**Note:** Threshold at  $\phi(u, v) \leq 1$  is key and differs from the bipartite case.

#### Theorem

This algorithm is  $\alpha := (e-1)/(e+1) \approx 0.46$ -competitive.

**Goal:** 
$$\sum_{\alpha} x_{e} \geq \alpha \text{ OPT}_{LP}$$

- $\sum_e x_e = \sum_v y_v$ holds at all times during the execution by construction
- $y_u + y_v + y_w \ge \alpha \quad \forall (u, v, w) \in E$ holds at the end of the execution by a careful analysis

Then  $y/\alpha$  is a feasible dual solution, giving:

$$\sum_{e} x_{e} = \sum_{v} y_{v} \ge \alpha \mathsf{ OPT}_{LP}$$

#### Hardness

#### Hardness for 3-uniform

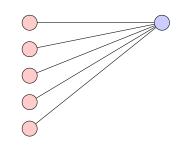
No fractional (or integral) algorithm can do better than (e-1)/(e+1) for 3-uniform hypergraphs under vertex arrivals.

#### Main ingredients:

- Hard instance for bipartite graphs under vertex arrivals [Karp, Vazirani, Vazirani 1990]
- Hard instance for bipartite graphs under edge arrivals [Gamlath, Kapralov, Maggiori, Svensson, Wajc 2019]
- ullet Threshold function  $\phi$  defined previously

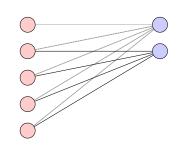
## Theorem [KVV'90]

- At each step, one offline node is removed uniformly at random
- OPT = n after n steps
- $\sum_{e} x_{e} \leq \left(1 \frac{1}{e}\right) n + O(1)$



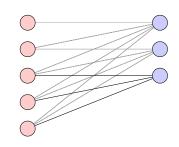
## Theorem [KVV'90]

- At each step, one offline node is removed uniformly at random
- OPT = n after n steps
- $\sum_{e} x_{e} \leq \left(1 \frac{1}{e}\right) n + O(1)$



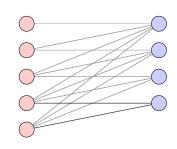
## Theorem [KVV'90]

- At each step, one offline node is removed uniformly at random
- OPT = n after n steps
- $\bullet \sum_{e} x_{e} \leq \left(1 \frac{1}{e}\right) n + O(1)$



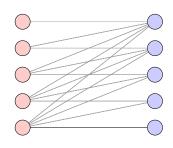
## Theorem [KVV'90]

- At each step, one offline node is removed uniformly at random
- OPT = n after n steps
- $\sum_{e} x_{e} \leq \left(1 \frac{1}{e}\right) n + O(1)$



## Theorem [KVV'90]

- At each step, one offline node is removed uniformly at random
- OPT = n after n steps
- $\bullet \sum_{e} x_{e} \leq \left(1 \frac{1}{e}\right) n + O(1)$

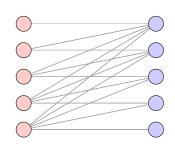


## Theorem [KVV'90]

No fractional (or integral) algorithm can do better than  $1-1/e\approx 0.63$  under vertex arrivals for bipartite graphs.

- At each step, one offline node is removed uniformly at random
- OPT = n after n steps
- $\sum_{e} x_{e} \leq \left(1 \frac{1}{e}\right) n + O(1)$

Uncertainty about which nodes can be matched later



**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

## Theorem [GKMSW'19]

**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

## Theorem [GKMSW'19]

- At each step, the optimal matching changes completely
- OPT = n after n steps
- $\sum_{e} x_{e} \leq n/2 + O(1)$





















**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

## Theorem [GKMSW'19]

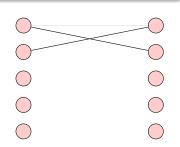
- At each step, the optimal matching changes completely
- OPT = n after n steps
- $\sum_{e} x_{e} \leq n/2 + O(1)$



**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

## Theorem [GKMSW'19]

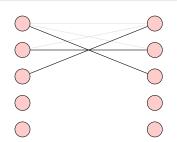
- At each step, the optimal matching changes completely
- OPT = n after n steps
- $\sum_{e} x_{e} \leq n/2 + O(1)$



**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

## Theorem [GKMSW'19]

- At each step, the optimal matching changes completely
- OPT = n after n steps
- $\sum_{e} x_{e} \leq n/2 + O(1)$



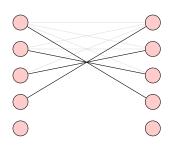
**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

## Theorem [GKMSW'19]

No fractional (or integral) algorithm can do better than 1/2=0.5 under edge arrivals for bipartite graphs.

- At each step, the optimal matching changes completely
- OPT = n after n steps
- $\sum_{e} x_{e} \leq n/2 + O(1)$

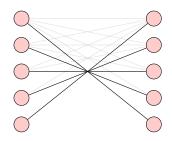
Uncertainty about the time horizon

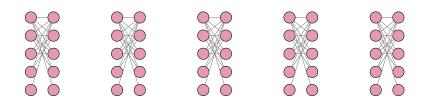


**Edge arrival model**: each edge arrives online one by one and an algorithm can only increase its (fractional) value at that point.

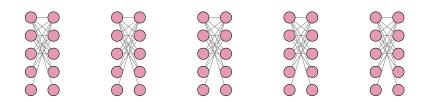
## Theorem [GKMSW'19]

- At each step, the optimal matching changes completely
- OPT = n after n steps
- $\sum_{e} x_{e} \le n/2 + O(1)$

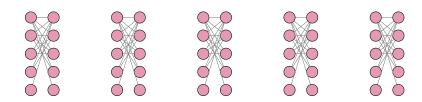




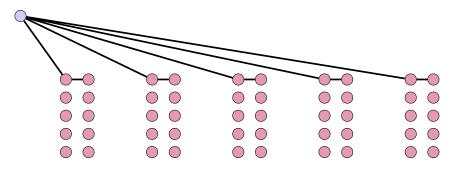
- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses



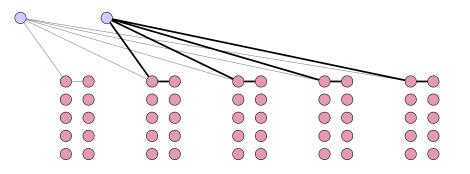
- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses



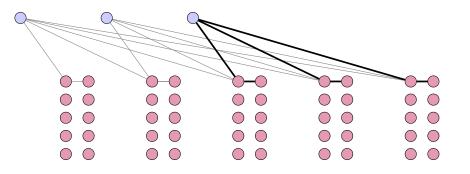
- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses



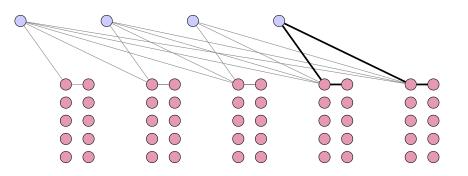
- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses



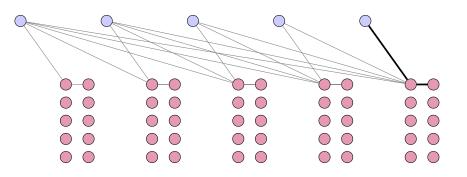
- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses



- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses



- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses



- Offline nodes: *n* parallel edge arrival instances
- Online nodes: connect to a (graph) matching on the offline nodes
- Combines both hardnesses

# Bounded degree algorithm

Suppose every online node has degree  $\leq d$ .

#### Algorithm: RANDOM

when  $v \in V$  arrives:

pick one available edge (u, v) uniformly at random

#### Theorem

RANDOM has a competitive ratio of at least

$$\frac{1}{2} \text{ if } d \leq 2 \qquad \frac{1}{3 - 2/d} \text{ if } d > 2$$

- Randomized primal-dual analysis
- Always strictly better than GREEDY (1/3-competitive)
- Optimal for  $d \leq 2$

#### Conclusion

- Optimal fractional primal-dual algorithm for 3-uniform hypergraphs
- Matching adversarial upper bound instance
- Integral algorithm for bounded degree hypergraphs

**Open question:** What is the best possible integral algorithm for this model?

#### Conclusion

- Optimal fractional primal-dual algorithm for 3-uniform hypergraphs
- Matching adversarial upper bound instance
- Integral algorithm for bounded degree hypergraphs

**Open question:** What is the best possible integral algorithm for this model?

Thanks!