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Introduction

A technique, applicable to scheduling/congestion problems with a
quadratic objective function C, allowing to upper bound

€

OPT

where x can be a

@ Nash equilibrium (— price of anarchy)

@ Local optimum (— approximation ratio of local search algorithms)

@ Output of an online algorithm (— competitive ratio)
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Example: Load balancing

Input: Set of machines M and jobs N with weights w;; € R U {oo}.

Goal: Find an assignment x € {0, 1}M*N of jobs to machines to minimize

Cl) =D ti(x)?
ieM

where £;(x) = >_;cy wjxjj is the load of a machine.
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Example: Load balancing

Input: Set of machines M and jobs N with weights w;; € R U {oo}.

Goal: Find an assignment x € {0, 1}M*N of jobs to machines to minimize

Clx) = i(x)>

ieM

where £;(x) = >_;cy wjxjj is the load of a machine.

Game-theoretic setting: each job selfishly picks one of its feasible
machines §; € M and wants to minimize its own share

Gi(x) =D ti(x)wix;
ieM

Online setting: each job arrives one by one and needs to irrevocably be
assigned to a machine by an algorithm
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Example: R|| > w;C

Input: M, N, processing times p;; € Ry U {oo}, weights w; € R
Goal: Find assignment x (and ordering on each machine) to minimize

C(x) =) wG(x)

JEN

where Cj(x) is the completion time of j € N.

Game-theoretic setting: each job needs to pick one of its feasible
machines S; C M in order to minimize its own completion time Cj(x).

Online setting: each job arrives one by one and needs to irrevocably be
assigned to a machine by an algorithm
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Price of Anarchy

Definition

An assignment x is a pure Nash equilibrium if

Gi(x) < Gi(x—j,1) Vjie N,Vies;.

Price of Anarchy (PoA)

The price of anarchy of a game is the worst-case, over all instances, of

Cleg)
oPT

where x is any Nash equilibrium.

€ [1, 0]
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Obtainable results

For R|| > w;C;, changing the ordering policy on each machine can
improve the price of anarchy.

Paper: Inner product spaces for MinSum coordination mechanisms
[CCGMO, STOC 2011]
Price of anarchy for R|| >  w;C;

@ Smith’s Rule leads to a PoA of 4

@ A preemptive policy called Proportional Sharing leads to a PoA of
(34 1/5)/2 ~ 2.618
@ A randomized policy called Rand leads to a PoA of 2.133

Other PoA results
@ Price of anarchy of weighted affine congestion games

@ Pure price of anarchy of P|| > w;C;
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Local search for R|| > w;C;

@ Move a job from one machine to another if that improves the
objective function gives an approximation ratio of ~ 2.618 [CM22]

@ Best known combinatorial approximation algorithm based on local
search achieves a ratio of ~ 1.809 [CGV17]

Online algorithms for R|| > w;C;

@ One deterministic (greedy) algorithm [GMUX20] and another
randomized algorithm achieving the optimal competitive ratio of 4

Follow-up work
Paper: Improved online load balancing in the two-norm [Borst, K. 25]

o Greedy algorithm is ~ 5.828-competitive [AAG+95], randomized
algorithm based on independent rounding is 5-competitive [Car08].

@ Primal-dual randomized algorithm achieving ~ 4.98 using negative
correlation rounding
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

¢

RSa B W SR W S
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

bi(z) = ¢ ¢

¢

1

¢

l3(x) =1+ ¢ 1
¢
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

bi(x) =¢ ®
¢ C1(z) = ¢?
1
¢ Ca(z) = ¢(1+ ¢)
l3(z) =1+¢ 1
¢ C3(z)=1+¢
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

¢

-

1
¢ Ca(z) = (1 + ¢)
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

¢

-

Cz(m_g, 2) =1

S [= \S [
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

¢

-

OPT=¢2 +n — 1

S [=\S [
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

OPT=¢2 +n — 1

C(x) = ng?
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Example: load balancing

Let ¢ =~ 1.618 such that ¢?> = 1+ ¢. Instance with |M| = |[N|+1=n+1

OPT=¢2 +n — 1

C(x) = ng?

PoA > ¢? ~ 2.618
M N
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Dual fitting: high-level view
Exact binary quadratic program to compute OPT:
min C(x)

d xj=1  VjeN
iESj

X,'J'E{O,l} vje N,Vies;.

Goal: [Kulkarni-Mirrokni, 2014]

For any Nash equilibrium x, find a feasible dual solution to some convex
relaxation with objective value V such that

V >pC(x) forsome pe[0,1]

— PoA =

Q
>
=
<
SRR
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Convex SDP relaxation
Since C(x) is quadratic, then
C(x) = (C, X) :=Tr(CX)

for some symmetric matrix C, where X = (1,x)(1,x)"

encodes all the
linear and quadratic terms of x.

A semidefinite programming relaxation:

min(C, X)
> Xy =1 VjeN
fESJ'
Xo,iy = Xy~ UEN,ES;
X0
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The dual SDP

Variables:
@ Scalars y; € R for every j € N
e Vector vy € RM
@ Vectors v € RM for every j € N, i € S;

1 2
max Y y—3 vl
JEN

1 . .
yi < C{,'J-7 U}_EHVUH2+ <V0,V,'j> Vj € N,IESJ'
<V,'J', V,'/k> <2 C{,-j7 ik} V(I,J) 75 (i,, k) with j, ke N
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Dual fitting: high-level view

1
max > yi= 5 vl
JeN

1 . .
i < Cij, ijy — 5”%’”2 + (v,vy)  VieN €S (1)
<VU, V,'/k> é 2 C.{U7 i’k} \V/(I,_j) # (i,, k) with j, k S N

@ Price of anarchy: make (1) correspond to Nash equilibria inequalities
Gi(x) < Gi(x—j, i) VieN,ieS,.

@ Local search: make (1) correspond to local optima inequalities

@ Online algorithms: make (1) correspond to inequalities satisfied by an
online algorithm at every time step
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Back to our example: load balancing

Specialize the SDP:

1 2
max > _ yi—3lwl
JEN

1 . .
ngw,-f—§|]v,-jH2+ (vo, vij) VjieN,ies;
<V,'j, Virk) < 2 Wij Wik ]l{,':,'/} V(i,j) # (i/, k) with j,k € N

Nash equilibria inequalities:

G(x) < wj+wjli(x) VjeNVieS,
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Back to our example: load balancing

Specialize the SDP:

1 2
max > _ yi—3lwl
JEN

1 . .
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Nash equilibria inequalities:

G(x)<wj+w;ili(x) VYjeNVieS,
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Fitting:
o VI_](I/) = Wj; ]1{,':,'/} for some a € [O, \@]

e vo(i) = B Li(x) for some 5 >0
e y; = Cj(x) for some v > 0

SDP constraints:

1
v < Wi il + (o, vi)
a? 5
—=7Gx)<(1- - wij +af wiili(x)

Constraints on the constants: v =1 — %2 =af

SDP objective: 3" y; — L[| = (aﬁ - %2) C(x)
JEN
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SDP objective: 3 y; — 1[vo2 = (aﬁ - %) C(x)
JEN

Goal:
For any Nash equilibrium x, find a feasible dual solution such that

1
> vi—5lIwlP = p Clx) forsome  pe0,1]
JjeN

15/16



SDP objective: 3 y; — 1[vo2 = (aﬁ - %) C(x)
JEN

Goal:
For any Nash equilibrium x, find a feasible dual solution such that

1
> vi—5lIwlP = p Clx) forsome  pe0,1]
JjeN

Solve:

max{aﬁ—ﬁz af=1- oze[O\f]B>0} 2 __ 1

3+v5  ¢2

Extension to congestion games

Also works for affine congestion games, where S; C oM.
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Conclusion

Conclusion

@ Unified proof technique for scheduling and congestion problems whose
optimal solution can be cast as a binary quadratic program

@ SDP relaxation can be obtained by the first round of Lasserre/SoS
hierarchy

@ Recovers and unifies numerous results

@ Works in game-theoretic, local search and online settings

Future work ideas
@ Apply this technique to new problems with a quadratic objective

@ Design a scheduling policy for R|| Y w;C; improving PoA of ~ 2.133

@ Extend this technique to higher degree polynomial objectives
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Conclusion

Conclusion

@ Unified proof technique for scheduling and congestion problems whose
optimal solution can be cast as a binary quadratic program

@ SDP relaxation can be obtained by the first round of Lasserre/SoS
hierarchy

@ Recovers and unifies numerous results

@ Works in game-theoretic, local search and online settings

Future work ideas
@ Apply this technique to new problems with a quadratic objective

@ Design a scheduling policy for R|| Y w;C; improving PoA of ~ 2.133

@ Extend this technique to higher degree polynomial objectives

Thanks!
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