
Selfish, Local and Online Scheduling via Vector Fitting

Danish Kashaev

SODA 2026, CWI Amsterdam

January 13, 2026

1 / 16

Introduction

A technique, applicable to scheduling/congestion problems with a
quadratic objective function C , allowing to upper bound

C (x)

OPT

where x can be a

Nash equilibrium (→ price of anarchy)

Local optimum (→ approximation ratio of local search algorithms)

Output of an online algorithm (→ competitive ratio)

2 / 16

Example: Load balancing

Input: Set of machines M and jobs N with weights wij ∈ R+ ∪ {∞}.

Goal: Find an assignment x ∈ {0, 1}M×N of jobs to machines to minimize

C (x) =
∑
i∈M

ℓi (x)
2

where ℓi (x) =
∑

j∈N wijxij is the load of a machine.

Game-theoretic setting: each job selfishly picks one of its feasible
machines Sj ⊆ M and wants to minimize its own share

Cj(x) =
∑
i∈M

ℓi (x)wijxij

Online setting: each job arrives one by one and needs to irrevocably be
assigned to a machine by an algorithm

3 / 16

Example: Load balancing

Input: Set of machines M and jobs N with weights wij ∈ R+ ∪ {∞}.

Goal: Find an assignment x ∈ {0, 1}M×N of jobs to machines to minimize

C (x) =
∑
i∈M

ℓi (x)
2

where ℓi (x) =
∑

j∈N wijxij is the load of a machine.

Game-theoretic setting: each job selfishly picks one of its feasible
machines Sj ⊆ M and wants to minimize its own share

Cj(x) =
∑
i∈M

ℓi (x)wijxij

Online setting: each job arrives one by one and needs to irrevocably be
assigned to a machine by an algorithm

3 / 16

Example: R ||
∑

wjCj

Input: M, N, processing times pij ∈ R+ ∪ {∞}, weights wj ∈ R+

Goal: Find assignment x (and ordering on each machine) to minimize

C (x) =
∑
j∈N

wjCj(x)

where Cj(x) is the completion time of j ∈ N.

Game-theoretic setting: each job needs to pick one of its feasible
machines Sj ⊆ M in order to minimize its own completion time Cj(x).

Online setting: each job arrives one by one and needs to irrevocably be
assigned to a machine by an algorithm

4 / 16

Price of Anarchy

Definition

An assignment x is a pure Nash equilibrium if

Cj(x) ≤ Cj(x−j , i) ∀j ∈ N, ∀i ∈ Sj .

Price of Anarchy (PoA)

The price of anarchy of a game is the worst-case, over all instances, of

C (x)

OPT
∈ [1,∞]

where x is any Nash equilibrium.

5 / 16

Obtainable results

For R||
∑

wjCj , changing the ordering policy on each machine can
improve the price of anarchy.

Paper: Inner product spaces for MinSum coordination mechanisms
[CCGMO, STOC 2011]

Price of anarchy for R ||
∑

wjCj

Smith’s Rule leads to a PoA of 4

A preemptive policy called Proportional Sharing leads to a PoA of
(3 +

√
5)/2 ≈ 2.618

A randomized policy called Rand leads to a PoA of 2.133

Other PoA results

Price of anarchy of weighted affine congestion games

Pure price of anarchy of P||
∑

wjCj

6 / 16

Local search for R ||
∑

wjCj

Move a job from one machine to another if that improves the
objective function gives an approximation ratio of ≈ 2.618 [CM22]

Best known combinatorial approximation algorithm based on local
search achieves a ratio of ≈ 1.809 [CGV17]

Online algorithms for R ||
∑

wjCj

One deterministic (greedy) algorithm [GMUX20] and another
randomized algorithm achieving the optimal competitive ratio of 4

Follow-up work

Paper: Improved online load balancing in the two-norm [Borst, K. 25]

Greedy algorithm is ≈ 5.828-competitive [AAG+95], randomized
algorithm based on independent rounding is 5-competitive [Car08].

Primal-dual randomized algorithm achieving ≈ 4.98 using negative
correlation rounding

7 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = 1 + ϕ

C2(x) = ϕ(1 + ϕ)

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = 1 + ϕ

C2(x) = ϕ(1 + ϕ)

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = ϕ(1 + ϕ)

C3(x) = 1 + ϕ

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = ϕ(1 + ϕ)

C3(x) = 1 + ϕ

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = ϕ(1 + ϕ)C2(x−2, 2) = 1

C3(x) = 1 + ϕ

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = ϕ(1 + ϕ)

C3(x) = 1 + ϕ

OPT= ϕ2 + n− 1

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = ϕ(1 + ϕ)

C3(x) = 1 + ϕ

C(x) = nϕ2

OPT= ϕ2 + n− 1

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Example: load balancing

Let ϕ ≈ 1.618 such that ϕ2 = 1 + ϕ. Instance with |M| = |N|+ 1 = n + 1

ℓ1(x) = ϕ

ℓ3(x) = 1 + ϕ

C1(x) = ϕ2

C2(x) = ϕ(1 + ϕ)

C3(x) = 1 + ϕ

C(x) = nϕ2

OPT= ϕ2 + n− 1

PoA ≥ ϕ2 ≈ 2.618

M N

ϕ

1

ϕ

1

ϕ

ϕ

8 / 16

Dual fitting: high-level view
Exact binary quadratic program to compute OPT:

min C (x)∑
i∈Sj

xij = 1 ∀j ∈ N

xij ∈ {0, 1} ∀j ∈ N, ∀i ∈ Sj .

Goal: [Kulkarni-Mirrokni, 2014]

For any Nash equilibrium x , find a feasible dual solution to some convex
relaxation with objective value V such that

V ≥ ρ C (x) for some ρ ∈ [0, 1]

=⇒ PoA =
C (x)

C (x∗)
≤ C (x)

V
≤ 1

ρ

9 / 16

Convex SDP relaxation

Since C (x) is quadratic, then

C (x) = ⟨C ,X ⟩ := Tr(CX)

for some symmetric matrix C , where X = (1, x)(1, x)T encodes all the
linear and quadratic terms of x .

A semidefinite programming relaxation:

min⟨C ,X ⟩∑
i∈Sj

X{ij , ij} = 1 ∀j ∈ N

X{0,0} = 1

X{0, ij} = X{ij , ij} ∀j ∈ N, i ∈ Sj

X ⪰ 0

10 / 16

The dual SDP

Variables:

Scalars yj ∈ R for every j ∈ N

Vector v0 ∈ RM

Vectors vij ∈ RM for every j ∈ N, i ∈ Sj

max
∑
j∈N

yj−
1

2
∥v0∥2

yj ≤ C{ij , ij} −
1

2
∥vij∥2 + ⟨v0, vij⟩ ∀j ∈ N, i ∈ Sj

⟨vij , vi ′k⟩ ≤ 2 C{ij , i ′k} ∀(i , j) ̸= (i ′, k) with j , k ∈ N

11 / 16

Dual fitting: high-level view

max
∑
j∈N

yj−
1

2
∥v0∥2

yj ≤ C{ij , ij} −
1

2
∥vij∥2 + ⟨v0, vij⟩ ∀j ∈ N, i ∈ Sj (1)

⟨vij , vi ′k⟩ ≤ 2 C{ij , i ′k} ∀(i , j) ̸= (i ′, k) with j , k ∈ N

Price of anarchy: make (1) correspond to Nash equilibria inequalities

Cj(x) ≤ Cj(x−j , i) ∀j ∈ N, i ∈ Sj .

Local search: make (1) correspond to local optima inequalities

Online algorithms: make (1) correspond to inequalities satisfied by an
online algorithm at every time step

12 / 16

Back to our example: load balancing

Specialize the SDP:

max
∑
j∈N

yj−
1

2
∥v0∥2

yj ≤ w2
ij −

1

2
∥vij∥2 + ⟨v0, vij⟩ ∀j ∈ N, i ∈ Sj

⟨vij , vi ′k⟩ ≤ 2 wij wik 1{i=i ′} ∀(i , j) ̸= (i ′, k) with j , k ∈ N

Nash equilibria inequalities:

Cj(x) ≤ w2
ij + wij ℓi (x) ∀j ∈ N, ∀i ∈ Sj .

13 / 16

Back to our example: load balancing

Specialize the SDP:

max
∑
j∈N

yj−
1

2
∥v0∥2

yj ≤ w2
ij −

1

2
∥vij∥2 + ⟨v0, vij⟩ ∀j ∈ N, i ∈ Sj

⟨vij , vi ′k⟩ ≤ 2 wij wik 1{i=i ′} ∀(i , j) ̸= (i ′, k) with j , k ∈ N

Nash equilibria inequalities:

Cj(x) ≤ w2
ij + wij ℓi (x) ∀j ∈ N, ∀i ∈ Sj .

13 / 16

Fitting:

vij(i
′) = α wij 1{i=i ′} for some α ∈ [0,

√
2]

v0(i) = β ℓi (x) for some β ≥ 0

yj = γ Cj(x) for some γ ≥ 0

SDP constraints:

yj ≤ w2
ij−

1

2
∥vij∥2 + ⟨v0, vij⟩

⇐⇒ γ Cj(x) ≤
(
1− α2

2

)
w2
ij + αβ wijℓi (x) (2)

Constraints on the constants: γ = 1− α2

2 = αβ

SDP objective:
∑
j∈N

yj − 1
2∥v0∥

2 =
(
αβ − β2

2

)
C (x)

14 / 16

SDP objective:
∑
j∈N

yj − 1
2∥v0∥

2 =
(
αβ − β2

2

)
C (x)

Goal:

For any Nash equilibrium x , find a feasible dual solution such that∑
j∈N

yj −
1

2
∥v0∥2 ≥ ρ C (x) for some ρ ∈ [0, 1]

Solve:

max

{
αβ − β2

2
: αβ = 1− α2

2
, α ∈ [0,

√
2], β ≥ 0

}
=

2

3 +
√
5
=

1

ϕ2

Extension to congestion games

Also works for affine congestion games, where Sj ⊆ 2M .

15 / 16

SDP objective:
∑
j∈N

yj − 1
2∥v0∥

2 =
(
αβ − β2

2

)
C (x)

Goal:

For any Nash equilibrium x , find a feasible dual solution such that∑
j∈N

yj −
1

2
∥v0∥2 ≥ ρ C (x) for some ρ ∈ [0, 1]

Solve:

max

{
αβ − β2

2
: αβ = 1− α2

2
, α ∈ [0,

√
2], β ≥ 0

}
=

2

3 +
√
5
=

1

ϕ2

Extension to congestion games

Also works for affine congestion games, where Sj ⊆ 2M .

15 / 16

Conclusion

Conclusion

Unified proof technique for scheduling and congestion problems whose
optimal solution can be cast as a binary quadratic program

SDP relaxation can be obtained by the first round of Lasserre/SoS
hierarchy

Recovers and unifies numerous results

Works in game-theoretic, local search and online settings

Future work ideas

Apply this technique to new problems with a quadratic objective

Design a scheduling policy for R||
∑

wjCj improving PoA of ≈ 2.133

Extend this technique to higher degree polynomial objectives

Thanks!

16 / 16

Conclusion

Conclusion

Unified proof technique for scheduling and congestion problems whose
optimal solution can be cast as a binary quadratic program

SDP relaxation can be obtained by the first round of Lasserre/SoS
hierarchy

Recovers and unifies numerous results

Works in game-theoretic, local search and online settings

Future work ideas

Apply this technique to new problems with a quadratic objective

Design a scheduling policy for R||
∑

wjCj improving PoA of ≈ 2.133

Extend this technique to higher degree polynomial objectives

Thanks!

16 / 16

	Introduction

