A Simple Optimal Contention Resolution Scheme for Uniform Matroids

Danish Kashaev, Richard Santiago

CWI Amsterdam, ETH Zurich

Aussois 2024

Fair Contention Resolution [Feige, Vondrák (2006)]

- $N = \{1, ..., n\}$ players and one item
- ullet Each $i \in \mathcal{N}$ independently requests the item with probability $x_i \in [0,1]$
- Assume that $x_1 + \cdots + x_n \le 1$

Goal: assign the item to at most one player and maximize $\rho \in [0,1]$ s.t.

$$\mathbb{P}\Big[\ i \ \text{gets item} \ \big|\ i \ \text{requests item}\ \Big] \geq \rho \quad \forall i \in N$$

$$\iff \mathbb{P}\Big[\ i \ \text{gets item}\ \Big] \geq \rho \ x_i \qquad \qquad \forall i \in N$$

Applications: Leads to approximation algorithms for combinatorial allocation problems (Submodular Welfare, Generalized Assignment, ...)

Fair Contention Resolution

Let $A \subseteq N$ be the random set of players requesting the item

Optimal algorithm [Feige, Vondrák (2006)]

- if $A = \emptyset$, do not allocate the item
- if $A = \{k\}$, allocate to player i
- if |A| > 1, allocate to each $i \in A$ with probability

$$r_A(i) := \frac{1}{x(N)} \left(\frac{x(A \setminus i)}{|A| - 1} + \frac{x(N \setminus A)}{|A|} \right)$$

Theorem. This algorithm achieves an optimal balancedness of

$$\rho = 1 - \left(1 - \frac{1}{n}\right)^n$$

Asymptotically converges from above to $1-1/e \approx 0.63$

Contention Resolution Schemes

- Ground set $N = \{1, \ldots, n\}$
- Feasible sets $\mathcal{I} \subseteq 2^N$ which are downward-closed (if $A \in \mathcal{I}$ and $B \subset A$, then $B \in \mathcal{I}$)
- Relaxation polytope $P_{\mathcal{I}} \subseteq [0,1]^N$
- Fractional point $x \in P_{\mathcal{I}}$

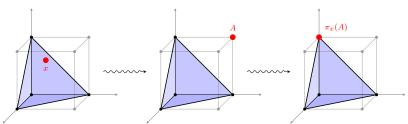
CR schemes [Chekuri, Vondrák, Zenklusen (2014)]

- 1. Each $i \in N$ independently rounds to $\{0,1\}$ with probability x_i , giving a random set of active elements $A \subseteq N$
- 2. **Goal:** remove elements from A to get a feasible set $\pi_x(A) \in \mathcal{I}$ s.t.

$$\mathbb{P}\Big[i \in \pi_{\mathsf{x}}(A) \mid i \in A\Big] \geq \rho \quad \forall i \in \mathsf{N}$$

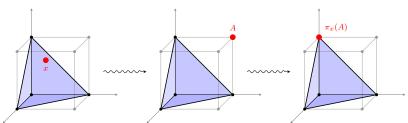
Contention Resolution Schemes

$$P_{\mathcal{I}} = \{x \in [0,1]^3, x_1 + x_2 + x_3 \le 1\}$$
:

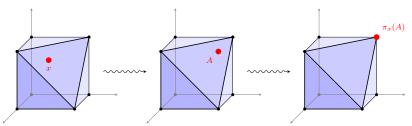


Contention Resolution Schemes

$$P_{\mathcal{I}} = \{x \in [0,1]^3, x_1 + x_2 + x_3 \le 1\}$$
:



$$P_{\mathcal{I}} = \{x \in [0,1]^3, x_1 + x_2 + x_3 \leq 2\}$$
:



Known Results

We are interested in uniform matroids U(k, n) with

$$\mathcal{I} = \{ S \subseteq N, |S| \le k \}$$
 $P_{\mathcal{I}} = \{ x \in [0, 1]^N, x(N) \le k \}$

Known Results

- 1. $1 (1 1/n)^n$ balanced scheme for U(1, n) [Feige, Vondrák (2006)]
- 2. 1-1/e balanced scheme for general matroids [Chekuri et. al. (2014)]
- 3. $1 e^{-k} k^k / k!$ correlation gap for U(k, n) [Yan (2010)]
 - 1. is optimal for any $n \in \mathbb{N}$, converges to 1 1/e as $n \to \infty$
 - 2. and 3. are asymptotically optimal as $n \to \infty$.

Our Results

Simple optimal scheme for U(k, n)

Input: $x \in P_{\mathcal{I}}, A \subseteq N$

- If $|A| \leq k$, then $\pi_{\mathsf{x}}(A) = A$
- If |A| > k, then sample from $\{B \subset A, |B| = k\}$ with probability

$$q_A(B) := rac{1}{inom{|A|}{k}} \Big(1 + \ ar{x}(A \setminus B) - ar{x}(B) \Big)$$

Theorem

1. This algorithm is c(k, n)-balanced with

$$c(k,n) := 1 - \binom{n}{k} \left(1 - \frac{k}{n}\right)^{n+1-k} \left(\frac{k}{n}\right)^k$$

2. Optimal for any values of k and n.

Where does c(k, n) come from?

$$h(x) := \sum_{A \subseteq N, |A| = k} \left(1 - \bar{x}(A)\right) \prod_{j \in A} x_j \prod_{j \notin A} (1 - x_j)$$

Evaluating h(x) at (k/n, ..., k/n) gives

$$\sum_{A \subseteq N, |A| = k} \left(1 - \frac{k}{n} \right) \left(\frac{k}{n} \right)^k \left(1 - \frac{k}{n} \right)^{n-k}$$
$$= \binom{n}{k} \left(1 - \frac{k}{n} \right)^{n+1-k} \left(\frac{k}{n} \right)^k = 1 - c(k, n)$$

Note: c(k, n) converges from above to $1 - e^{-k} k^k / k!$ as $n \to \infty$.

Comparison to previous scheme for U(1, n)

Gives another optimal scheme for U(1, n) with $\rho = 1 - (1 - 1/n)^n$

Previous scheme

If |A| > 1, allocate to each $i \in A$ with probability

$$r_A(i) = \frac{1}{x(N)} \left(\frac{x(A \setminus i)}{|A| - 1} + \frac{x(N \setminus A)}{|A|} \right)$$

This scheme

If |A| > 1, allocate to each $i \in A$ with probability

$$q_A(i) = \frac{1}{|A|} \Big(1 + \bar{x}(A \setminus i) - x_i \Big)$$

- Linear with respect to x
- Generalizes to any k

Efficient implementation for U(k, n)

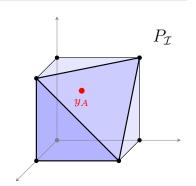
For U(k, n), it suffices to know the marginals of the distribution q_A .

Lemma

For every |A| > k and every $i \in A$:

$$y_A(i) := \mathbb{P}\Big[i \in \pi_x(A)\Big] = \frac{1}{|A|}\Big(k + \bar{x}(A \setminus i) - x_i\Big)$$

- $y_A \in P_{\mathcal{I}}$, since q_A is a distribution over \mathcal{I}
- Find a convex combination of at most n+1 vertices
- Sample a vertex according to that distribution



Efficient implementation for U(k, n)

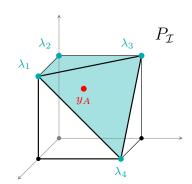
For U(k, n), it suffices to know the marginals of the distribution q_A .

Lemma

For every |A| > k and every $i \in A$:

$$y_A(i) := \mathbb{P}\Big[i \in \pi_X(A)\Big] = \frac{1}{|A|}\Big(k + \bar{x}(A \setminus i) - x_i\Big)$$

- $y_A \in P_{\mathcal{I}}$, since q_A is a distribution over \mathcal{I}
- Find a convex combination of at most n+1 vertices
- Sample a vertex according to that distribution



Proof idea

Fix $i \in N$. We need to show $\forall x \in P_{\mathcal{I}}$:

$$G(x) := \mathbb{P}\Big[i \notin \pi_x(A) \mid i \in A\Big] \leq 1 - c(k, n).$$

Use the law of total probability with q_A to get a multivariable polynomial function of x.

Proof idea

Fix $i \in N$. We need to show $\forall x \in P_{\mathcal{I}}$:

$$G(x) := \mathbb{P}\Big[i \notin \pi_x(A) \mid i \in A\Big] \leq 1 - c(k, n).$$

Use the law of total probability with q_A to get a multivariable polynomial function of x.

Goal:

$$\max_{x \in P_{\mathcal{T}}} G(x) = 1 - c(k, n)$$

- 1. Use linearity of the scheme and first maximize G(x) over x_i
- 2. Maximize the obtained symmetric function $h(x_{-i})$ in the variables

$$x_{-i} := \left\{ x_j, j \in N \setminus \{i\} \right\}$$

$$P_{\mathcal{I}} = \{x \in [0,1]^N, x_1 + \dots + x_n \le k\}$$

G(x) is a linear function of x_i if considering the other variables fixed. Moreover, the linear coefficient in front of x_i is positive.

$$\to x_i = k - x(N \setminus \{i\})$$

Lemma

 $G(x) \le h(x_{-i})$ for every $x \in P_{\mathcal{I}}$ with equality at $x_i = k - x(N \setminus \{i\})$

$$h(x_{-i}) := \sum_{A \subseteq N \setminus \{i\}, |A| = k} \left(1 - \bar{x}(A)\right) \prod_{j \in A} x_j \prod_{j \notin A} (1 - x_j)$$

$$h(x_{-i}) = \sum_{A \subseteq N \setminus \{i\}, |A| = k} \left(1 - \bar{x}(A)\right) \prod_{j \in A} x_j \prod_{j \notin A} (1 - x_j)$$

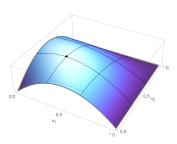


Figure: n = 3, k = 1, maximum at (1/3, 1/3)

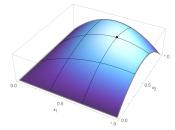


Figure: n = 3, k = 2, maximum at (2/3, 2/3)

Lemma

 $h(x_{-i})$ has a unique extremum (maximum) at $(k/n, \ldots, k/n)$

Evaluating $h(x_{-i})$ at $x_{-i} = (k/n, ..., k/n)$ still gives

$$h(x_{-i}) = \sum_{A \subseteq N \setminus \{i\}, |A| = k} \left(1 - \bar{x}(A) \right) \prod_{j \in A} x_j \prod_{j \notin A} (1 - x_j)$$

$$= \binom{n-1}{k} \left(1 - \frac{k}{n} \right)^{n-k} \left(\frac{k}{n} \right)^k$$

$$= \binom{n}{k} \left(1 - \frac{k}{n} \right)^{n+1-k} \left(\frac{k}{n} \right)^k = 1 - c(k, n)$$

Theorem (Balancedness)

The *CR* scheme for U(k, n) has balancedness $\rho = c(k, n)$.

Hardness

Theorem (Hardness)

No CR scheme for U(k, n) can have balancedness $\rho > c(k, n)$

- Fix $x_i = k/n$ for every $i \in N$
- Let π be a ρ -balanced CR scheme returning $\pi_{\kappa}(A)$

$$\mathbb{E}\Big[\mathsf{rank}(A)\Big] \geq \mathbb{E}\Big[|\pi_{\mathsf{x}}(A)|\Big] = \sum_{i \in N} \mathbb{P}\Big[i \in \pi_{\mathsf{x}}(A)\Big] \geq \sum_{i \in N} \rho \, x_i = \rho \, k$$

Lemma

At the point $x = (k/n, \dots, k/n)$:

$$\mathbb{E}\Big[\mathsf{rank}(A)\Big] = k\Big(1 - h(x)\Big)$$

$$\implies \rho \leq 1 - h(x) = c(k, n)$$

Conclusion

Conclusion

- Simple optimal CR scheme for uniform matroids
- Different optimal probability distribution for U(1, n)
- Generalizes to U(k, n) for every k, n
- Upper and lower bounds depending on $n \in \mathbb{N}$

Future work ideas

- Other simple CR schemes for different constraint families
- Different (simpler) proof of the optimality of this algorithm
- Try to adapt it in an online or random order model

Thanks!