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Abstract

Submodular function maximization became a very interesting and well-studied area in recent
years due to a vast number of applications. A relaxation and rounding framework is now a standard
and effective way to tackle the constrained submodular maximization problem subject to indepen-
dence constraints. In particular, a general and successful tool for the rounding part are contention
resolution schemes (or CR schemes). These take a fractional point in a relaxation polytope, round
each coordinate of that point independently to get a possibly non-feasible set, and then drop some
elements randomly in order to satisfy the independence constraints. A CR scheme is c-balanced if
each element included in the randomly rounded set is kept with probability at least ¢. Another
important property for a CR scheme to have is monotonicity.

A1—(1—-1/n)™balanced CR scheme is already known for the uniform matroid of rank one,
and it is also known that this is optimal. Moreover, a (1 — 1/e)-balanced CR scheme has been
provided for a general matroid and is asymptotically optimal, in the sense that one cannot hope to
get a better balancedness factor by designing a CR. scheme for any general matroid.

The main goal of this thesis is to find classes of matroids where the above 1 — 1/e balancedness
factor can be improved. We provide simple monotone CR schemes with an improved balancedness
factor for three classes of matroids: uniform matroids (of any rank), partition matroids, and ma-
troids with pairwise disjoint circuits. In addition, we prove that the balancedness that we get for
each of them is optimal, i.e. one cannot hope to design higher-balanced CR schemes for these three
cases. In particular, for uniform matroids, the factor we provide generalizes the previously known
result of 1— (1—1/n)™ for the rank one case to 1 — (}) (1 — %)nﬂ_k (£)k for the rank k case. For a

fixed value of k, this expression converges to 1 — e*k%c as n tends to infinity, which also generalizes

the asymptotical 1 — 1/e for the rank one case.
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1 Introduction

1.1 Constrained submodular maximization

Submodular functions have received a lot of attention in recent years in very diverse fields. This is
due to the fact that they capture a natural property of set functions: diminishing marginal returns.
Applications of submodular functions are very vast: algorithmic game theory, machine learning and
combinatorial optimization are three of the main fields where they are used, see for example [15],
[16], [19]. The formal definition is the following.

Definition 1.1. Given a ground set N = {1,...,n}, a set function f : 2 — R is submodular if:
FAU{Y) = f(4) > F(BU{iY) — f(B) VYACBCN, i¢B.

In words, we take two subsets A, B C N, where one is contained in the other (A C B), as well as
an element 4 € N which does not lie in either of A and B. The submodularity property states that
the marginal gain obtained by adding i to A is always bigger than the marginal gain obtained by
adding 7 to B.

Remark. The submodularity property can equivalently be restated as
f(A)+ f(B) > f(AUB) + f(AN B) VA,B C N.

Even though this statement might seem simpler, it is harder to understand intuitively.

Let us now describe the framework for the constrained submodular maximization problem. We are
given:

e A finite set N = {1,...,n}, called a ground set.
o A family Z C 2% of feasible sets (or independent sets).

e A non-negative submodular set function f : 2V - R>o. We can equivalently see this mapping
as f:{0,1} = Rxq by associating to every set A C N its characteristic vector 14 € {0,1}.

The constrained submodular mazimization problem is then

S). 1.1

max f(S) (1.1)
In words, we want to maximize a non-negative submodular function subject to independence con-
straints captured by Z. We will assume throughout this thesis that Z is a down-closed family, i.e.
if BC Aand A € Z, then B € Z. A successful approach for tackling this problem consists of a
relaxation and rounding framework (see [4]). We need the following definition before stating this
approach.

Definition 1.2. The polytope Pr C [0,1]" corresponding to the independence family Z is the
convex hull of the characteristic vectors of independent sets, i.e.

Pr:=conv({1lg | S € I}).

Moreover, a polytope P C [0,1]V is a relazation of Pr (or a relazation of T) if the integer points
are the same, i.e. PN{0,1}" = Pr N {0,1}". Notice this implies that Pr C P.



We now state the relaxation and rounding framework for the constrained submodular maxi-
mization problem.

1. We first relax the problem maxgez f(.5) to the problem

max F'(x)
reP

where F : [0,1]Y — R is a suitable extension of f : {0,1}" — Rsg, i.e. the function F
needs to satisfy F| 13~ = f.

We approximately solve this maximization problem and get a fractional point z € P.

2. We then round this fractional point = € P into an integral feasible solution 15 € PN {0, 1}V
corresponding to an independent set S € 7.

If f is modular, there exists a weight function w : N — R such that for any A C N, f(4) =
> ica wi- Hence, a natural choice for the extension F is simply the linear function F(z) = w’z.
The relaxation problem is then a linear program for which we can compute an exact solution z* in
polynomial time (provided that P is a solvable polytope).

If f is submodular, a successful extension for maximization problems is the multilinear extension

Fyrp (first introduced in [4]). Tt is defined as follows:

Fup(@) =E[f(R@)] = > f(A) [[= [ -=)

ACN i€A  jgA

where R(x) C N is a random set obtained by independently picking each element ¢ with probability
x;. Moreover, it was shown in [3] that if P is the matroid polytope and f is monotone (i.e.
f(A) < f(B) for A C B), there is an approximation algorithm of a factor of (1 — 1/e) for the
first part of the relaxation and rounding framework: maximizing the multilinear extension over the
matroid polytope. Other approximation factors for the non-monotone case and different constraints
were shown in [5].

We are in this thesis interested in the second part of this relaxation and rounding recipe. Hence
the main question of interest is the following. Given a fractional point x € P, how can we round
this point into an integral point 15 € PN{0,1}Y corresponding to an independent set S € T without
losing much objective value? Contention resolution schemes, introduced in [5], are a powerful and
versatile tool to tackle this problem.

1.2 Contention resolution schemes

We present in this subsection a general framework, called contention resolution schemes (or CR
schemes) and introduced in [5], as one possible answer to the aforementioned question. We are
given a fractional point € P and round it to a feasible integral point in the following way.

1. We first obtain a random set R(x) C N by independently including each element i € N with
probability x;.

2. We then remove some elements from the set R(z) using an algorithm 7, such that the returned
set I := m;(R(x)) is an independent set. This algorithm can either be deterministic or
randomized.



Definition 1.3 ([5]). m = (7;)zep, is a c-balanced contention resolution scheme for the polytope
P if for every x € P, m, is an algorithm that takes as input a subset A C supp(z) and outputs an
independent set I := 7, (A) € T contained in A such that

Pli e mo(R(x)) | i€ R(z)] >c Vi€ supp(a). (1.2)
Moreover, a contention resolution scheme is monotone if for any = € P:
Pli € m.(A)] > Pli € m,(B)] for any i € A C B C supp(z). (1.3)
Remark. Condition (1.2) can be equivalently restated as:
}P’[i e wm(R(z))] >ecx;  VieN. (1.4)
Indeed,

Pli € m(R@) i€ R@)| > c < lp[i & m.(R(2)).i € R)| > c

L4

PN %]P’[i e m(R(x))] > c

= P[i € WI(R(x))} > cx;.

Remark. In all the results in our thesis, we work directly with an inequality description of Pr = P.
Therefore, when the polytope Pz is clear from the context, we will sometimes omit to say that
the contention resolution scheme is with respect to that polytope. For example, we will say "a
contention resolution scheme for uniform matroids” instead of ”a contention resolution scheme for
the matroid polytope of a uniform matroid”.

A c¢-balanced CR scheme then gives rise to a natural approximation algorithm for the problem
maxger f(S) if f is a modular function, provided that the relaxation polytope P for Z is solvable.

Theorem 1.1 ([5]). Let m = (7y)zep be a c-balanced CR scheme for a solvable relazation P of
a down-closed family T on a ground set N. Let f : 2N R>o be a modular function. Using
the relaxation and rounding framework, we obtain a randomized algorithm returning a set I € T
satisfying E(f(I)) > ¢ maxgez f(S).

Proof. Since f is modular, there exists a weight function w : N +— R such that for any A C N,
f(A) = 3,4 wi. As mentioned in Subsection 1.1, we define the relaxation max,ep w”z and get
an optimal solution x* € P using linear programming if P is a solvable polytope. We then apply
the CR scheme 7 to get a feasible set I := m,«(R(z*)).

E[f(I)] =E lz wi| =E|> 1{i61}w¢] => PlicNuw
i€l i€EN €N
> Z:cxz‘wZ :cZ:z:;‘ w; = ¢ (wl z*)
iEN ieN

= c maxw’ 2 > ¢ max f(9)
zeP SeT

where the first inequality follows from the c-balancedness of the scheme 7 and the second one from
the relaxation problem. O



A natural question that arises is the following. Can we extend Theorem 1.1 to the setting where
f is submodular and the relaxation problem is maxyep Farr (), where Fpsr is the multilinear
relaxation defined in Subsection 1.17 It turns the answer is yes, provided that the CR scheme m is
monotone.

Theorem 1.2 ([5]). Let m = (7y)zep, be a c-balanced monotone CR scheme for a relazation P of a
down-closed family T on a ground set N. Let f : 2N +— Rxq be a non-negative submodular function.
We suppose we have an a-approzimation algorithm for the relazation problem max,cp Farr ()
and let * € P be an a-approxrimate optimal solution. Then I := w%(R(x*)) satisfies E(f(I)) >
¢ Farp (%) > ac maxger f(S).

Thus, monotonicity is an important and desirable property for a CR scheme to have if we want to
apply it in the context of constrained submodular maximization.

1.3 Matroids

We introduce in this subsection a general background on matroids. For more on matroids, the
interested reader is invited to consult [17].

Definition 1.4. A matroid M is a pair (N,Z) consisting of a ground set N and a non-empty
family of independent sets T C 2"V which satisfy:

e If AcZ and B C A, then B € 7.
o If A€ 7 and B € T with |A| > |B|, then 3¢ € A\B such that BU {i} € .

The first condition simply means that Z is a down-closed family. The second condition can be
stated in words as: if B is independent, and there exists a larger independent set A, then B can be
extended by adding an element of A. Therefore, any non-maximum (cardinality-wise) independent
set can be extended. This means that every mazimal (inclusion-wise) independent set is maximum
(i.e. of maximum cardinality). Such a set is called a base of the matroid.

Definition 1.5. A base of the matroid M = (N,Z) is an independent set B € Z of maximum
cardinality. Equivalently, it is a maximal inclusion-wise independent set.

A base of a matroid can thus be found by a greedy process: start with the empty set and add
elements one by one arbitrarily while keeping independence.

Definition 1.6. Let M = (N,Z) be a matroid. The rank function r : 2 + N is defined as
r(A) = max{|S|: SC A,S eI}

The rank function computes, for any subset A of the ground set, the cardinality of a maximal
independent set included in A.

Definition 1.7. A circuit C of a matroid M = (N,Z) is an inclusion-wise minimal dependent set.
Therefore, if we remove any element from a circuit, we get an independent set.
Definition 1.8. The girth g of a matroid M = (N, Z) is the length of a shortest circuit.

Remark. We have introduced matroids using Definition 1.4, which are called independence axioms.
However, this is not the only way we can define matroids. Indeed, one could have used other sets
of axioms, such as base azioms, or even circuit axioms (see [13] for more details).



Definition 1.9. (Base axioms) A matroid M is a pair (N, B) where N is a ground set and B is a
non-empty collection of subsets of NV, called bases, satisfying:

e For any distinct By, Bo € B, we have By ¢ Bs and Bs ¢ Bj, i.e. no base properly contains
another.

e For any By, By € B, and any = € By, there exists y € By such that Bj —x+y € B

Definition 1.10. (Circuit axioms) A matroid M is a pair (N,C) where N is a ground set and C
is a non-empty collection of subsets of N, called circuits, satisfying:

e For any distinct C1,Cs € C, we have C; ¢ Cy and Cy ¢ C, i.e. no circuit properly contains
another.

e For any C1,Cy € C, and any © € C; N Cq, we have that (C; UCy) — z contains a member of C.

We now introduce the matroid polytope and give an inequality description for it. The proof of the
inequality description can be found in [6].

Definition 1.11. Let (N,Z) be a matroid. The matroid polytope is defined as:
Pr:=conv({ls: S €I})={z eRYy|z(A) <r(4) VAC N} (1.5)

Let us now give some examples of matroids that will interest us in this thesis. These examples also
nicely illustrate all the different concepts introduced above.

Example 1.1 (Graphic matroids). Let G = (V, E) be a graph. The graphic matroid Mq := (E,T)
is the matroid where the ground set is F and the independent sets are

I:={F C E|F is a forest}.

In other words, the independent sets are all the acyclic subgraphs of G. If the graph G is connected,
a base of the graphic matroid is a spanning tree. If G has several connected components, a base
corresponds to a spanning tree for each component. The rank of a subset of edges outputs the size
of the maximal forest (or acyclic graph) contained in those edges. A circuit of the graphic matroid
simply corresponds to a cycle of the graph. The girth of this matroid coincides with the usual
notion of girth g for a graph, i.e. the length of a shortest cycle.

Example 1.2 (Uniform matroids). Let N = {1,...,n} be a ground set. The uniform matroid of
rank k on n elements U¥ := (N, Z) is the matroid whose independent sets are all the subsets of the
ground set of cardinality at most k:

T:={ACN||A <k

A base of U is simply a subset of size exactly k, and a circuit is subset of size k + 1. The rank of
an independent set is the cardinality of that set, and the rank of a dependent set is k. The girth of
Uk is clearly equal to k + 1.
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Figure 1: Some bases and circuits for the graphic matroid of a specific graph.

Example 1.3 (Partition Matroids). Partition matroids are a generalization of uniform matroids.
Suppose the ground set N = {1,...,n} is partitioned into k blocks: N = D; U --- U Dy, and each
block D; has a certain capacity d; € Z>o. The independent sets are then:

T:= {AcN||AﬁDi|§di Vie{l,...,k}}.

The uniform matroid U¥ is simply a partition matroid with one block N and one capacity k.
Moreover, the restriction of a partition matroid to each block D; is a uniform matroid of rank d;
on the ground set D;.

1.4 An introductory example

We start by giving a very easy and natural CR scheme for the graphic matroid polytope of the graph
K3. We believe this nicely exemplifies the concept of a CR scheme and will help build intuition for
the main results of this thesis.

Let G = K3 and let Mg = (E,Z) be the graphic matroid. We can explicitly write all the
elements, as well as the independent sets.

o I = {61762363}

o T={0,{e1} {2} fesh {en 2}, ferses}, {ea, s} |
K3
€1 €2 The only non-independent set is: €1 €2

€3 €3

Notice the only set A € 2% which is not an independent set is the full set E = {e;, e2,e3}. That
is the only ”problematic” set if R(z) happens to be rounded to it in the first step of a CR scheme,
and we will have to build an algorithm which removes at least one element if that happens.



Let’s now explicitly compute the inequality description of the corresponding matroid polytope
by using (1.5).
Pr={ze Rgo | z(A) <r(A) VAC E}.
For notational simplicity, we denote x; = x(e;) for each ¢ € {1,2,3}. By writing down all the
constraints and removing the redundant ones, we arrive at the following simple description.

To

331S1
l’2§1
x3§1
1+ a9+ 23 <2 '

PI: .TGR?O

Each subset of edges A C E corresponds to one constraint of the matroid polytope. Hence, there are
2F constraints (in addition to the non-negativity constraints) in the original inequality description.
However, as is the case in this example, some constraints can be redundant. In particular, we
did not write the constraints corresponding to {ej,e2} : 1 + z2 < 2; {e1,e3} : ©1 + x5 < 2;
{ea,e3} : o + 23 < 2. Indeed, these can be obtained by summing the constraints {e;} + {ea};
{er} + {es}; {ea} + {es}.

Let’s now define the CR scheme. We give a brief reminder of the framework. We are given a
fractional point x € Pz. This point can be seen as a weight x; on each edge e; in the graph Kj.
We then obtain R(x) by rounding each coordinate independently to 1 with probability z;. R(zx)
is now a random vector in {0,1}¥, or, equivalently, a random subset of the edges. However, this
obtained set might not be independent, in which case we need to (randomly) remove some elements
from it in order to make it independent. As mentioned above, the only non-independent set is
E = {ej,ea,e3}. Therefore a very natural oblivious (i.e. which does not depend on the input point
x € Pr) randomized CR scheme is the following.

Algorithm 1.1.
n:28 T
m(A)=A for any A # {e1,e2,e3}
{e1,e2} with probability 1/3
w({e1,e2,e3}) = < {e1,e3} with probability 1/3
{e2,e3} with probability 1/3.

In words, if R(z) happens to round to {ej,es, es}, then we remove one element with uniform
probability. We now want to prove this CR scheme is c-balanced for some ¢. The goal is thus to
find a scalar ¢ € [0,1] such that Ple € w(R(z)) | e € R(z)] > ¢ for any e € supp(x). It turns out
that ¢ = 2/3 works in this case.

Proposition 1.1. Algorithm 1.1 is a 2/3-balanced CR scheme for the graphic matroid polytope of
Ks.
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(a) One run of Algorithm 1.1 on the graph K.
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(b) One run of Algorithm 1.1 on Pz.

Figure 2: Two different ways to visualize a run of the CR scheme described by Algorithm 1.1.

Proof. Instead of directly trying to compute Ple € w(R(z)) | e € R(z)], we will work with the
complement Ple ¢ m(R(z)) | e € R(z)] and try to upper bound this quantity. This will be the
strategy used to prove the balancedness of every CR scheme in this thesis.
Suppose 1 > 0. We use the total probability law on the events {R(x) = E} and {R(x) #* E} to
compute the desired probability:
Ples ¢ n(R(x) | e1 € R(@)] = Ples ¢ 7(R(x)), R(x) = E| e1 € R(x)
+Pler ¢ m(R(2)), R(z) # E | e1 € R(z)]
=Ple1 ¢ (R(af))l R(z) = E] P[R(z) = E | e1 € R(z)]
+Pler & 7(R(z)) | R(@) # B.e1 € R@)] P[R(x) £ E | e1 € R@)]

1
P[el ¢ m(R(x)) | R(z) = ] ]P’[eg € R(x),e3 € R(az)] = 3 T2%3.
By doing these exact same steps again, we get three exact probabilities.
e Ple; ¢ m(R(z) | e1 € R(z)] = & maz3 for every x € Pz with z; > 0.

1
3
o Plex ¢ m(R(2) | e2 € R(z)] = § w123 for every « € Pr with x5 > 0.
1
3

o Ples ¢ m(R(z) | e3 € R(z)| = 5 122 for every x € Pr with z3 > 0.

10



Since z1,x2,23 < 1 by (1.6), we get that for every x € Pr,

Ple ¢ m(R(z) | e € R(z)] < Ve € supp(x).

Wl =

Our desired result therefore follows:

Ple € n(R(z) | e € R(z)] > 1 — % = % Ve € supp(x).

O

A natural question is then the following. Can we find a CR scheme with a higher balancedness
than 2/3? If so, what is the best that we can do? The answer is that we can indeed do better, and
the best we can achieve is 23/27 ~ 0.85. Here is a CR scheme that achieves that.

Algorithm 1.2. For every x € Pr,

Ty 28 s T
Ty (A) = A for any A # {eq, ez, e5}

{e1,e2} with probability x3/(z1 + 22 + x3)
7 ({e1,e2,e3}) = < {e1,e3} with probability xs/(z1 + 22 + 23)
{e2,e3} with probability z1/(x1 + z2 + x3)

Proposition 1.2. Algorithm 1.2 is a 23/27-balanced CR scheme for the graphic matroid polytope
of K3. Moreover, this balancedness is optimal, i.e. there does not exist a c-balanced CR scheme for
the graphic matroid polytope of K3 satisfying ¢ > 23/27.

Notice that Algorithm 1.2 is not oblivious anymore, i.e. it does depend on the input point = € Pr.
Proposition 1.2 will be a special case of the first result that we will present in this thesis. Indeed,
we will provide an optimal CR scheme for any matroid with pairwise disjoint circuits.

1.5 Known results and our contributions

In this thesis, we are interested in designing contention resolution schemes for different classes of
matroids. A CR scheme with a balancedness of 1 —(1—1/n)" is provided for the uniform matroid of
rank 1 in [7] and [8]. Moreover, it is shown that this is optimal, which means that no c-balanced CR
scheme exists for the uniform matroid of rank 1 with ¢ > 1—(1—1/n)". A result proved in [5] shows
that there exists in fact a 1 —(1—1/n)"-balanced CR scheme for any general matroid. This existence
proof can then be turned into an efficient algorithm with a balancedness of 1 — 1/e &~ 0.63. It is
also argued in that same paper that this is (asymptotically) optimal, since 1 — (1 —1/n)" converges
to 1 —1/e as n gets large and one cannot do better than 1 — (1 — 1/n)™ for the uniform matroid
of rank one, as previously mentioned. However, this algorithm uses random sampling and lacks
simplicity, which is why another simpler CR scheme with a worse balancedness was also presented.

There has been work done in getting CR schemes for different types of independence families
(see [2], [11]), or by having the elements of the random set R(x) arrive in an online fashion (see [1],
9], [14)).

However, to the best of our knowledge, not much work has been done in the direction of finding
subclasses of matroids where the 1 — 1/e balancedness factor can be improved. This is the problem

11



tackled in this thesis, where we consider three different types of matroids and provide simple CR
schemes achieving a strictly better balancedness factor than 1 — 1/e. Moreover, we also show that
the achieved balancedness factors are optimal.

Our first result is an optimal monotone CR scheme for matroids with pairwise disjoint circuits.

The balancedness of this scheme is of 1 — % (1- %)9*1, where ¢ is the girth, or length of a shortest
circuit of the matroid. Note that 1 — é (1- %)9’1 > 0.75 for any g > 2, which is already much
higher than 1 —1/e = 0.63.

The second and main result of this thesis is an optimal monotone CR scheme for the uniform
matroid of rank k on n elements, where the balancedness is of ¢(k,n) := 1 — (2) (1 — %)nﬂ_k (%)k
This generalizes the previous result of 1 — (1 — 1/n)™ for the rank one case by plugging in k = 1.
Moreover, for a fixed value of k, ¢(k, n) D70 ] —e Rk /k!, which also generalizes the asymptotical
1—1/e balancedness for k = 1. Finally, even in that case, our scheme is in a sense simpler than the
one provided in [7] and [8], since our algorithm simply consists of assigning a probability to each
base contained in the input set and picking one base according to that probability distribution.

Finally, the above CR scheme for uniform matroids naturally generalizes to partition matroids.
If we denote by c(k,n) the optimal balancedness for the uniform matroid UF, then the balancedness
we get for a partition matroid with blocks D; and capacities d; is min; ¢(d;, |D;|). Again, we also
prove that this is optimal.

12



2 An optimal monotone contention resolution scheme for
matroids with pairwise disjoint circuits

2.1 The CR Scheme

We provide in this section an optimal monotone CR Scheme for any matroid with pairwise disjoint
circuits. We are given a point € Pr and a subset A C supp(z). The CR scheme checks one by
one whether each circuit is completely contained inside the set A. When a circuit is completely
included, the algorithm removes one element from it randomly, where the probability depends on
the input point x € Pr. The framework is the following:

e N ={ej,..,e,} is the ground set.

e M = (N,7) is a matroid with circuits {Cy,...,Cy} where C; N C; = 0 for every i # j €
{1,...,k}.
e Pr={zeRY | z(A) <r(4) VACN}={oec[0,1]V|z(C;) <|Ci| -1 Vie{l,..k}}

is the corresponding matroid polytope.

We may assume without loss of generality that the matroid does not have loops, i.e. the girth of
M satisfies g > 2. Indeed, if an element e € N is a loop, it is a one element dependent set and
r({e}) = 0. It follows that any point x € Pr satisfies z. = 0 and that the random set R(z) will
never contain the element {e} in the first place.

a A

Algorithm 2.1 (CR scheme 7 for Pr). We are given a point € Pr and a set A C supp(z).

e For each circuit C;, check whether C; is completely included in A, i.e. check whether
C; C Aforeachie {1,...,k}.

o If C; C A, remove one element e € C; randomly with probability x(e)/x(C;).

. J

Remark. We here use a standard notation that we have already used before, which is that for any
ACN,z(A) =3 ca(e).
Theorem 2.1. The CR scheme described in Algorithm 2.1 for a matroid with pairwise
disjoint circuits has a balancedness of

1 1\
c=1—(1—) ,
9 9

where g is the girth of the matroid M.

\. J

Remark. This balancedness is actually optimal. That is, no CR scheme can achieve a higher
balancedness for this type of matroids. We prove that in the next section.

Notice that ¢ is always greater than (1 — 1/e) ~ 0.63, which is the balancedness of the CR scheme
provided for an arbitrary matroid in [5]. The worst case here is 3/4 = 0.75, which corresponds to
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g 2 3 1 5 6 10
c 075 085 089 092 0093 0.96

Table 1: Numerical values for the balancedness of the CR scheme described in Algorithm 2.1

g = 2. Indeed, the balancedness grows as g increases, since

1 1 r—1
H1_<1_)
T T

is a strictly increasing function for x > 2. This is illustrated in Table 1.
Let us now move on to the proof of Theorem 2.1. We will first need the following lemma.

Lemma 2.1. Let M = (N,Z) be a matroid and let x € Pr. Let C be a circuit of the matroid with

z(C) > 0. Then:
T

where g is the girth of the matroid.

Proof of Lemma 2.1. The proof is a consequence of the arithmetic-geometric mean inequality and
of the constraint of the matroid polytope corresponding to the circuit C: z(C) < |C] — 1. We set

m := |C| for simplicity. As a reminder, the arithmetic-geometric mean inequality states:
|C] m
[ o0 < (Zsc™) =9
ecC | ‘ m
Hence,
Heec a:(e) - x(C)m B .T(C)m_l - (m—l)m_l - l . i m—1 _ 1 ) 1 g—1
z(C) T mmax(C)  mmml T mmml om m ~ g g '

The first inequality follows from the arithmetic-geometric mean inequality, the second one from the
constraint z(C') < |C|— 1 of Pz and the last one from the fact that g < m. O

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since the circuits are by definition the minimal (inclusion-wise) dependent
sets of the matroid, removing one element from them gives an independent set. Since the circuits
are all pairwise disjoint, the algorithm removes one element from each of the circuits completely
contained in A, hence returning an independent set which is a subset of A.

Let’s compute the balancedness of the scheme. We are given a point « € Pr and a random set
R(z) C N where each element e; € N is included with probability x(e;) independently.

Let e € supp(z) and suppose R(z) contains e. If e does not lie in any circuit of the matroid M,
then Algorithm 2.1 will always keep that element. Hence:

Ple € mp(R(z)) | e € R(z)] = 1.

14



We can thus suppose that there exists a unique i € {1, ..., k} such that e € C;.
If C; ¢ supp(x), then C; will never be completely included in R(z) and Algorithm 2.1 will thus
always keep the element e. Our desired probability is equal to one again:

Ple € m,(R(z)) | e € R(z)] =
Hence, we can assume that C; C supp(x). We condition on the event {C; C R(z)} to compute the
desired probability.
Ple ¢ mo(R(2)) | e € R(x)] =Ple ¢ m:(R(x)) | e € R(x),C; C R(x)] P[C; C R(z) | e € R(x)]
+Ple ¢ m(R(2)) | e € R@),Ci ¢ R(@)] P[C: ¢ R(@) | e € Rx)]
=Ple ¢ m,(R(z)) | C; C R(z)] P[C; C R(z) | e € R(z)]
= a(e)/z(C) [ =)
J(Cy)

feai\
g

(11
S0y

where the inequality follows from Lemma 2.1. We therefore get the desired result by taking the
complement:

1 1\
Ple € m(R(z)) | € € R(w)] 21—9(1—) .

2.2 Optimality

We provide in this section a hardness result about the balancedness of a contention resolution
schemes for any matroid. The bound that we find takes into account the girth g of the matroid,
i.e. the circuit of shortest length. In particular, we show that the balancedness of any CR scheme
for any matroid cannot be higher than 1—1/g (1 —1/g)9~!. This also shows us that Algorithm 2.1
is an optimal CR scheme for matroids with pairwise disjoint circuits.

Theorem 2.2. Let M = (N,Z) be a matroid with girth g. There does not exist a c-balanced
1
CR scheme for M withc>1— = (1 — 7)‘] .

The proof for Theorem 2.2 generalizes the idea of the proof of a similar statement for uniform
matroids of rank one given in [5].

Proof. Welet N = {e1,...,e,} be our ground set and C' a shortest circuit of the matroid. Without
loss of generality, we may reorder the elements of the ground set so that C' = {ej,...,ex} where
we denote by k the cardinality, or length of that circuit. Hence k = g, where g is the girth of the
matroid.

15



We fix the following point in the matroid polytope:

Cfk-1/k iteec
z(e) = {0 ifedcC. @1)

Notice that « € Pr = {x € RY | 2(4) <r(4) VA C N}. Indeed, for any A C C,

o) = 2214 < 4] = r(a),

since any strict subset of a circuit is independent. Moreover,
z(C)=k-1=r(C).

Since the values of = are zero everywhere outside the circuit C, it is clear that all the other constraints
of the matroid polytope are satisfied as well.

Let m be any c-balanced CR scheme for M, and let R(x) C N be a random set satisfying
Ple € R(z)] = z(e) for every e € N independently. We denote by I := m,(R(x)) the independent
set returned by this CR scheme. Notice that since I is always a subset of R(x), we get that

E[]] <E[r(R(z))]. (2.2)
Moreover, due to our choice of the point z in (2.1) and the definition of a ¢-balanced CR scheme,
E[I]|=E lz 1{661}] = Z PleeI] > Z cxz(e) = Z cz(e) = (k—1)c. (2.3)

eEN eEN eeEN ecC

We thus get the following upper bound for the balancedness factor by combining (2.2) and (2.3):

]E[’I“(R(l‘))]
c< -1 (2.4)

Let’s now compute the expected rank by using the following facts:
e Since supp(z) = C, we get that r(R(z)) can only take values in {0,...,k — 1}.

. . IRV k—i .
o Plr(R(z)) =4 =P[|R(x)| =] = (k) (54)" ()" " forany i € {0,...,k —2}.

7

o Plr(R(z)) =k — 1] =P[|R(z)| = k — 1] + P[|R(z)| = k] = (,*,) (%)’H (+) + (%)’“.
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Then,
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=(k—1) (1—k(k kkl) +(kkk1) >

=(k—1) (1—

where we have used the equality Zf:_lli (]:) (k—1)" = (k — 1)k* — k(k — 1)* from the third to the
fourth line. This is an easy consequence of the binomial formula by taking the derivative on both
sides.

By plugging the above into (2.4) and remembering that k = g, where g is the girth of the

matroid M = (N, Z), we finally get:

e
I/
—
|
x| =
~__

ol
L
~__—

2.3 Monotonicity
We prove in this subsection that the CR scheme provided in Algorithm 2.1 is monotone.

Theorem 2.3. Algorithm 2.1 is a monotone CR scheme for any matroid M with disjoint circuits,
i.e. for any x € Pr and any e € A C B C supp(x),

Ple € 7, (A)] > Ple € m.(B)].

Proof. Let x € Pz. If e does not lie in any circuit of the matroid, then 7, will always keep that
element (c.f. Algorithm 2.1). This means that Ple € m,(A)] = 1 and the theorem trivially holds.
We thus suppose that e is contained in a unique circuit C; for some ¢ € {1,...,k}. If C; is not
completely contained in A, then again Algorithm 2.1 will always keep the element e, and therefore
Ple € m;(A)] = 1. Finally, if e € C; C A, we also have that C; C B, which means that

17



Figure 3: An example of a cactus graph

Ple € m.(A)] = Ple € m,(B)] = 1 — z(e)

and the theorem holds in that case as well. O

2.4 Applications to graphic matroids

A direct and straightforward application of Theorem 2.1 is to the graphic matroid of graphs with
pairwise disjoint cycles (where by disjoint we mean the edge sets of those cycles). Equivalently,
these are graphs where each edge lies in at most one cycle. It turns out that such a definition
already exists for connected graphs.

Definition 2.1. A connected graph G is a cactus graph if each edge of G lies in at most one cycle.
Equivalently, the cycles of the connected graph have disjoint edge sets.

Remark. The name cactus graph was originally introduced in [10]. They were previously also named
Husimi trees in [12].

Therefore, the graphs G for which we can apply Algorithm 2.1 / Theorem 2.1 are disjoint union of
cacti.

Corollary (Corollary of Theorem 2.1). Let G be a disjoint union of cacti. Then Algorithm 2.1 is
a c-balanced CR scheme for the graphic matroid polytope of G with

1 1\
ey
g g

It turns out that there is a broad class of graphs which satisfy that property. Indeed, any simple
graph without even cycles is a disjoint union of cacti.

where g is the girth of G.

Proposition 2.1 ([18]). Let G = (V,E) be a simple graph without even cycles. Then each edge
lies in at most one cycle.

We provide a detailed proof which was first found in the online reference [18].

18



Proof. Suppose for contradiction that there exists an edge e € E that is contained in two distinct
cycles C7 and C3. We split the proof into two cases.

Case 1: Suppose C; and Cs intersect in one common path. Denote the common path of C; and
Cs by P and its endpoints by u and v.

e If P has even length, then the path C;\ P from v to u must have odd length, since C; has odd
length. Likewise, the path Co\P from v to w must have odd length. We can then construct
a new cycle C5 := (C1\P) U (C3\P) of even length, which is a contradiction.

e If P has odd length, then the path C1\P from v to v must have even length, since C; has odd
length. Likewise, the path C5\P from v to u must have even length. We can then construct
a new cycle C5 := (C1\P) U (C3\P) of even length, which is a contradiction.

u u

Figure 4: Tlustration of the first case of the proof of Theorem 2.1

Case 2: Suppose C; and (5 intersect in at least two disjoint common paths. Let P; and P> be
two disjoint consecutive common paths of C7 N C5. Let a be the last vertex of P; and let b the
first vertex of P». We construct a new cycle C5 the following way: we follow the cycle C; from a
to b (we call this path @1), and then follow Cy from b to a (we call this path @2). Then, since
Cs must have odd length by assumption, @)1 C C7 and Q2 C Cs must have different parities. But
then C; — @1 + Q2 (we modify Cy by replacing @1 by @) is a cycle of even length, which is a

contradiction.
Q1 b b
P, , C1— Q1+ Qe
a a
Cy

Figure 5: Illustration of the second case of the proof of Theorem 2.1

O

Cl b

This allows us to have another corollary of Theorem 2.1.
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Corollary (Corollary of Theorem 2.1). Let G be a simple graph without even cycles. Then there
exists a c-balanced CR scheme for the graphic matroid polytope of G satisfying ¢ > 23/27 ~ 0.85.

Proof. By Theorem 2.1, G is a disjoint union of cacti. By the previous corollary, Algorithm 2.1 is
a c-balanced CR scheme for the graphic matroid of that graph with

Since G is a simple graph, it cannot have any parallel edges, which means that g > 3. In particular,

1 1 3—1
c>13(1) = 23/27.
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A C supp(z)

(a) The input set A C supp(z). The cycles that need to be broken by Algorithm 2.1 are shaded in blue.

(b) The output of Algorithm 2.1, which is independent (acyclic) set 7, (A) € T

Figure 6: An example run of Algorithm 2.1 applied to the graphic matroid of a cactus graph.
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3 An optimal monotone contention resolution scheme for
uniform matroids

We consider in this section the problem of designing an optimal CR scheme for any uniform matroid.
To the best of our knowledge, this was only done so far for the uniform matroid of rank one (that
we denote by U!) in [7] and [8]. For a ground set of size n, a CR scheme with a balancedness of
1—(1—-1/n)" was given and it was shown in [5] that this was optimal, i.e. no c-balanced CR
scheme for the uniform matroid of rank one can satisfy ¢ >1— (1 —1/n)".

Our contribution is an optimal CR scheme for the uniform matroid of rank k& on n elements

(that we denote by U}) which has a balancedness factor of ¢(k,n) :=1— (}) (1 - %)n+17k (%)k
It is clear that this generalizes the previous result for the uniform matroid of rank 1 by setting

k = 1. Moreover, as mentioned before, this factor is optimal, thus no c-balanced CR scheme for U
can satisfy ¢ > 1 — (Z) (1 - %)nﬂ_k (%)k For a fixed k, this satisfies ¢(k,n) RAA I e kR /KL,
which also generalizes the (1 — 1/e) asymptotically optimal balancedness for the rank one case. In
addition, even when considering the case k = 1, our CR scheme is in a sense simpler than the one
presented in [7] and [8], even though both CR schemes are (1 — (1 —1/n)™) -balanced, since we are
in that case simply assigning a probability to each element of the input set and picking an element

according to that probability distribution.

3.1 The CR scheme for U*

Let us describe the framework for the uniform matroid U¥ = (N,Z). We assume throughout this
whole section that n > 2 and that k € {1,...,n — 1}.

e N ={1,...,n} is the ground set.
e 7={AC N ||A| <k} are the independent sets.

o Pr={xeRY |z(4) <r(A) VACN}={ze[0,1]N |z, + -+, <k} is the matroid
polytope.

Let’s now describe the CR scheme. For any point « € Pz, we let R(z) be the random set
satisfying P[i € R(x)] = x; independently for each coordinate. If the size of R(z) is at most k, then
R(z) is already an independent set and the CR scheme returns that. If however |R(z)| > k, then
the CR scheme returns a random subset of k£ elements by making the probabilities of each subset
of k elements depend linearly on the z-coordinates of the original point x € Pr.

Let us define what these probabilities are. We first fix an arbitrary « € Pr. For any set
A C supp(x) with |A| > k and any subset B C A of size k, we define:

where we use the following convenient notation:

44(B) i= o (14 #(A\ B) - 2(B)) (3.1)

SA) = L aia) = LN,
Z(A) := A (A) ‘AMGX;N'
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Figure 7: An example run of Algorithm 3.1 withn =9 and k =4

We are now ready to define the following randomized CR scheme 7 for UF.

Algorithm 3.1 (CR scheme 7 for U¥). We are given a point x € Pr and a set A C supp(x).
o If |A| <k, then 7, (A) = A
o If |A| > k, then for every B C A with |B| = k, 7,(A) = B with probability g4 (B).

Let us first prove that this CR scheme is well-defined, i.e. g4 is a valid probability distribution.

Lemma 3.1. The above procedure 7 is a well-defined CR scheme, i.e. Yax € Pz, A C supp(z)

ga(B)>0, Y qa(B)=1.
BCA|B|=k

Proof. Since Z(A\ B) € [0,1] and Z(B) € [0,1], it directly follows from the definition (3.1) that
qA(B) > 0.
In order to prove the second claim, we will need the equality
_ (1A -1
> atm = (1) e (32)
BCA,|B|=k

that we derive the following way:

Z I(B) = Z Zzil{iEB} = Z$Z Z 1{ieB}

BCA,|B|=k BCA,|B|=k i€A i€A  BCA,|B|=k
Al -1
—Samcalis-kien- (1) x.
€A
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Hence,

1 z(A\ B z(B
Y. wB) = > g (” |(A\—kz) B (k)>
BCA,|B|=k BCA,|B|=k ( )

1 z(A) x(B) x(B)
=t Z_k<|A—k_|A|—k_ k)

( z(4) _ [Al=(B) )

A=k k(A=)

o
N
>
k=

v s Al
A1 k) Bc£=k<(A) =)

(|1A|_k) (("N)ea) = (")) =1

—~ —~ —~
=

~ ~ ~
—~

Here is the main theorem of this section.

Theorem 3.1. Algorithm 3.1 is a c-balanced CR scheme for the uniform matroid of rank
k on n elements (denoted by UF), where:

T

\ J

Since we use the expression on the right hand side of the previous equation very often throughout
this section, we denote it by:

k1= (1) (1-5) (5 -

A few important remarks:

o for k=1, we get ¢(k,n) =1— (1 —1/n)", which indeed reproduces the optimal balancedness
for U} provided in [7] and [8]. This converges to 1 — 1/e ~ 0.63 when n gets large.

o for k=n—1, weget c(k,n)=1-1(1- %)n_l. Notice that U1 = M, , where M, is
the graphic matroid of the cycle graph. The result from Section 2: ” An optimal monotone
CR scheme for matroids with pairwise disjoint circuits” coincides with the one here. This
converges to 1 as n tends to infinity.

o An efficient CR scheme for an arbitrary matroid was provided in [5] with a balancedness of
1—1/e~0.63. In our case, c(k,n) > 1—1/e for any k and n. This is illustrated in Table 2.

Proposition 3.1. For a fized k, the limit of c(k,n) as n tends to infinity is

nler;oc(k,n) =1-e R
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(n\K] 1 [ 2 | 3 [ 4 [ 9 [ 99 [ 999 |
2 075
3 ][ 0.704 [ 0.852
4 [ 0.684 | 0.813 [ 0.895
5 [[0.672]0.793 ] 0.862 [ 0.918
10 ]] 0.651 | 0.759 [ 0.813 | 0.850 | 0.961
100 ]| 0.633 [ 0.732 | 0.779 | 0.810 | 0.874 | 0.996
1000 ]| 0.632 [ 0.730 | 0.776 | 0.809 [ 0.869 | 0.962 [ 0.999

Table 2: Numerical values for the balancedness ¢(k,n) of Theorem 3.1

Proof. We will need Stirling’s approximation, which states that:

n n
n! ~ V2mn (7) (3.4)
e
which means that these two quantities are asymptotic, i.e. their ratio tends to 1 if we tend n to
infinity. By (3.4), we get

n! nym" 1 e \"7" % n' n
(n—k)! 7m(e) 21 (n — k) (n—k) ¢ (n—Fk)r—k\Vn—k (3:5)
Hence,
n :ZC n+l—k :ZC k
1—c(k,n) = 1—— —
=) 00 ()
kF n! (n — k)nti-k
T K (n—k)! nntl
LK n—k n
~ € —_—
kKl n n—k
k¥ In—k
— ok
Y n
kk:
—k
~ € H’
where we have used (3.5) from the second to the third line. O

3.2 Outline of the proof of Theorem 3.1

We give in this subsection an outline of the proof of Theorem 3.1. Throughout this whole section
on uniform matroids, we fix an arbitrary e € N. In order to prove Theorem 3.1, we need to show
that for every x € Pr with z. > 0:

Ple € m(R(x)) | e € R(x)] > ¢(k,n).
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This is equivalent to showing that for every z € Pr with x, > O:
Ple ¢ 7, (R(x)) | e € R(x)] < 1 —¢(k,n). (3.6)
We now fix a few key definitions/notations.
Notation 1. For any BC A C N,
pa(B) :=P[Ra(z) = B] = [[=: [] (1—a).
i€B  icA\B

where R,(x) is the random set obtained by rounding each coordinate of z|4 in the reduced ground
set A to one independently with probability ;.

Remark. Of course, py(B) = P[R(z) = B]. We do not write the dependence on x € Pr for
simplicity of notation.

Notation 2. We will mainly work on the set N \ {e}. For this reason, we define:
S:= N\ {e}.

Of course, this means that |S| = n — 1, which is something that we will use very often. These two
notations allow us to rewrite the probability in (3.6) in a more convenient form. Indeed, for any
x € Pr satisfying z. > 0,

Ple ¢ my(R(z)) | e € R(m)} Z Ple ¢ 7. (R(x)) | Rs(z) = A,e € R(z)] P[Rs(x) = A | e € R(x)]

ACS
= Y Ple¢m(R@)|R@) =AUe| ps(4)
ACS,|AI>k
= Y ps(A) D qaue(B).
ACS,|A|>k BCA,|B|=k
The obtained expression is a multivariable function of the variables z1,...,z,, since pg(A) and

gaue(B) depend on those variables as well. We give it the following notation.

Notation 3.

Glx):= Y ps(A) > qau(B). (3.7)

ACS,|A|>k BCA,|B|=k

It turns out that for proving Theorem 3.1, it is enough to show the following.

Theorem 3.2. Let G(x) and c(k,n) be as defined above. Then the following maximization
problem satisfies

max G(z) =1—-c(k,n)

and the maximum is attained at the point

(CL‘l,...,.’I}n):<k‘/’l’L,...,k/7’L> € Pr.
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Proof that Theorem 3.2 implies Theorem 3.1. Indeed, Theorem 3.2 implies that for every x € Pr,
G(z) <1—c(k,n)
with equality holding if © = (k/n, ..., k/n). In particular, for any x € Pr satisfying z. > 0, we get:
G(z) = Ple ¢ m(R(2)) | ¢ € R(2)| <1 = c(k,n),

which is what we needed to prove Theorem 3.1 by (3.6). O

Notice that for the conditional probability to be well defined, we need the assumption that
xz. > 0. However, in our case, G(x) is simply a multivariable function of the n variables x1,...,x,
and is thus also defined when z. = 0. We may therefore forget the conditional probability and
simply treat Theorem 3.2 as a multivariable maximization problem over a bounded domain. We
now state the outline of the proof.

1. We first maximize G(x) over the variable x.. We then get an expression depending only on
the x-variables in .S. This is done in Section 3.3.

2. We then maximize the expression obtained in the first part over the unit hypercube [0, 1]°.
This is done in Section 3.4.

3. Finally, we will combine the first two parts to show that the maximum in Theorem 3.2 is
attained at the point x; = k/n for every ¢ € N. This is done in Section 3.5.

3.3 Maximizing over the variable z.

The matroid polytope of U¥ is
Pr={z e [0,V |z(N) < k}.
We define a new polytope by removing the constraint x. < 1 from Pr:

Pr:={zeRY |z(N)<kandz; <1 VieS} (3.8)

Clearly, Pr C 161. Here is the main result of this subsection.

r 3

Lemma 3.2. For every x € ]51,

G < > ps(a)(1-5(4). (3.9)

ACS,|A|=k

Moreover, equality holds when x. =k — z(S5).

\. J

Remark. In other words, we consider the maximization problem max{G(z) | # € P} and maximize
G(x) over the variable x. while keeping all the other variables (z; for every i € S) fixed to get an
expression depending only on the z-variables in S.
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G(z) = Z ps(A) Z qaue(B)
ACS,|A|>k BCA,|B|=k
= Y w) Y s (14 2B Ue) - #(B)
ACS,|A|>k BCA,|B|=k ( & )
_ 1 z(A\ B) +z. x(B)
B AC%MZ’S(A) <|A‘|k+T) Bc%;m—k (1 A=kt k ) ' (3.10)

We now maximize this expression with respect to the variable z. over Pr while keeping all the
other variables fixed. Since this is a linear function of z. and the coefficient of x. is positive, the
maximal value will be z. = k — (5) in order to satisfy the constraint z(N) < k. Note that this
was the reason for the definition of Py, since k — x(S) might not necessarily be smaller than 1. We
thus plug-in . = k —2(5) in (3.10) and write an inequality to emphasize that the derivation holds
for any x € Pr.

(3.10) < ACS,ZI;XZICPS(A)(lAll}l) Bcél_k (1 L oA }j)jkkﬂx(@ B a:(kB)>
- ACS;MPS(A)('M}) N AZ]; . (1 ke ﬁji 12)+—1x(B) - x(}f))
B Achzkpsm)(w,}l) Bcg;ﬂ_k <1 Al —kk: +1 jﬁ\kﬁ)l B <|A| _1k 1T ;) x(B)>
: AC%E’CPS(A)("L"}I) B@ém (|A|A—|Zi L Ij;l@f—?1 B k<|f|f|4|—+kl+ 1)“3)) |

(3.11)
Notice the only part which depends on B in the last summation is 2(B). By using Equation (3.2)
.. |A]
and noticing that ZBcA_"B‘:k 1= ( . ), we get

o= 3 it (0= (s - 22 )
k

ACS,|A|>k

= 2wl (|A|1+ DG () <A| HEoeEA |A|A+| 1x(A)>
k

ACS,|A|>k

> sty M (- e - H )

ACS,|A|>k |A| +1 |A| —k+1 ‘A|
= Ps(4) e MEESN
_ACSZI%M A1 (|A|+1 (5\4) -1 (A))
= _x(S\4)  =2(4)
- ACS,Z|,:42k pa(4) <1 |Al +1 |A| ) ' (3.12)
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Now, note that by definition of the term pg(A), we have
2, ps(A) = (1 —z;) ps(AUi) foranyie S\ A. (3.13)
We compute the middle term in (3.12) by plugging in (3.13) and the change of variable B := AUj.

S e\ A= Y Y s e

ACS,|AI>k ACS,|A|>k i€S

1
= Z Z _ (1 —.’L‘i> ps(AUi) 1{i¢A}
i€S  ACS,|A|>k |A| +1

=Y Y ) ps(B) L

i€S BCS,|B|>k+1

1 1

= Z EPS(B)Z liieBy — Z @pS(B)Z zi1lgieB)

BCS,|B|>k+1 ics BCS,|B|>k+1 ics

B

DN C RIS S

BCS,|B|>k+1 BCS,|B|>k+1
Tr el

BCS,|B|>k+1

z(A

= Z pS(A)(l— |(A|)>. (3.14)

ACS,|A|>k+1

We finally plug-in (3.14) into (3.12) and use 3 4cg a5k = 2oacs,|A|>k+1 T 2oAcs, A=k O g€t

= ¥ s (1-57) = T ss@(i-aw).

ACS,|A|=k ACS,|Al=k

Notice that the only place where we used an inequality was from (3.10) to (3.11). Hence equality
holds when z, = k — x(5). O
3.4 Maximizing h% : [0,1]° — R

We now turn our attention in this section into maximizing the right-hand side expression in Lemma
3.2 over the unit hypercube [0,1]7:

> ps(A)(1 - z(4)). (3.15)
ACS
[A=k
It turns out it is more convenient to work with the following function.
Wg(x) =Y ps(A)(k —z(4)). (3.16)

ACS
|Al|=Fk
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Expression (3.16) is simply expression (3.15) multiplied by k. Hence, maximizing one or the other
is equivalent: the optimal solution will be the same, whereas the optimal function value will be
multiplied by a factor of k.

Let us give a few reminders to make this subsection self-complete.

e We assume that n > 2 and k € {1,...,n — 1}.

e S := N\{e} is the set we obtain by removing the fixed element e € N from the original ground
set N ={1,...,n}. We may without loss of generality assume here that S = {1,...,n — 1}.

e ps(A) = [lica i HieS\A(l — ;) for every A C S. This quantity implicitly depends on the
point z € [0,1]5.
o c(k,n):=1-— (Z) (1 - 5)n+1_k (%)k is the balancedness we are trying to show for the CR

n

scheme described in Algorithm 3.1.

Theorem 3.3. Letn>2 and k € {1,...,n —1}. In particular, |S| =n —1> 1. Then,
(@) = > ps(A)(k —z(A)) (3.17)
ACS
[A]=k
attains its maximum over the unit hypercube [0,1]% at the point (k/n, ..., k/n) with value
k n+l—k k k
hk(k ok ):k ") (1= v :k<1— k ) 1
S /n7 /n k n n C( 777‘) (3 8)

For simplicity, we denote this maximum by:

ak,n) =k (Z) (1 - i)n+1_k (i)k (3.19)

Notice that h%(z) = h%(z) = 0 for any = € [0,1]°. The theorem thus holds for k = 0 and
k = n as well. Moreover, the function h%(z) also satisfies an interesting duality property: h%(z) =
hE k(1 - ).

Let us state the outline of the proof of Theorem 3.3.

1. We first prove a proposition stating that this function has a unique local maximum in the
interior of [0,1]° at the point (k/n,...,k/n).

2. We then show by induction on n that any point in the boundary of [0, 1]° has a lower function
value than hE(k/n,... . k/n).

Proposition 3.2. For any k € {1,...,n — 1}, hk(z) has a unique extremum in the interior of the
unit hypercube [0,1]° at the point (k/n, ..., k/n). Moreover, that point is a local mazimum.

We need the following lemma in order to prove Proposition 3.2.
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0.0

(a) S ={1,2}, k=1 (b) S ={1,2},k=2

Figure 8: Plot of hf(z) for S = {1,2}. The maximum is attained at z1 = x> = 1/3 in (a) and at
x1 =122 =2/3 in (b).

Lemma 3.3. The following holds for any = € [0,1]°:

k—1
K@) = 3 Qb(a) ((5) — ) (3.20)
i=0
where
Q)= > ps(A). (3.21)
ACS,|A|=k

Remark. This formula actually holds for h% for any A C N and we will use it again in Section 3.6
for A= N.

Proof of Lemma 3.3. Notice that for i € A, ps(A4) (1 —z;) = ps(A\ i) z;. Then

5 33): ZPS(A)Zl_xz Z ZPS 1_171 1{zeA}

ACS i€A AcCS ieS
[A=k [Al=k
=Y > wips(A\) lueay =Y, Y zips(B
€S ACS i€S BCS\t
|Al=k |Bl=k—1

=S a Y ps(A) = | Y ps(A) = D ps(A)leq
cs

i€S  AcS\i €S AcCS A
|A|=k—1 |[Al=k—1 |[Al=k—1
=2(9)Q (@) — Y ps(A)x(A). (3.22)
AcCS
|A|=k—1
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Notice that by definition of h%(z) we have

W l@)= Y psWk—1-a(A)=(k-1) Y ps(4)— > ps(A)(4)

ACS ACS ACS
|A|l=k—1 |A|l=k—1 |A|l=k—1
=(k-1)Q (@)= > ps(A)z(A). (3.23)
ACS
|Al=k—1

Substracting (3.23) from (3.22) we get

Pi(z) - B (@) = Q57 (@) (w(8) — (k= 1)). (3.24)

We can rewrite this recursive formula as
PE (@) — (@) = Qb (@) (2(8) — 1) (3.25)
By summing both sides from 0 to & — 1 and noticing that h% (z) = 0, we get the desired result. O

We are now able to prove Proposition 3.2.

Proof of Proposition 3.2. Let k € {1,...,n — 1}. To find the extrema of h% : [0,1]% — R, we want
to solve VhE(z) = 0. We thus first need to find

Ohs ()
8.”L'i

for every i € S. (3.26)

Notice that:

e For a set A C S such that i € A,

sps(A)(k—a(4) = (k= o(4) T[ a5 [T (1= )~ ps(4)

JEAVG  jES\A

=(k—2(A) [ & [I C=2)—a [] = [[ -2 (3.27)

JjEA\L JjES\A JEA\L JES\A
= (k — 2(A4)) ps\i(A\ 1) — z; ps\i(A\ )
=ps\i(A\ i) (k —z(A\1) — 2962-).

e For a set A C S such that i ¢ A,

ai-pS(A)("? —a(A) = —~(k—x(A) [Tz; [ Q-2)
' JEA  je(S\A\i (3.28)

= —ps\i(4) (k - m(A))'
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We are now able to compute (3.26):

onk(z) 0
= 2 ps(A)(k ()
|A|=k

= Y ps(A)E - (A + Y ops(A)( - a(4)
Acs Tt Acs T*
|A|=k |A|=k
icA i¢A

= 3 pouA\ D (k= 2(A\0) = 22,) = 37 pevi(A) (k- (4))
ACS ACS
[Al=Fk |A|=k
icA i¢A

= Z ps\z(B)(k’—l'( _2371) Z pS\z ( (A))
BCS\i AcCS\i
|B|=k—1 |A|=Fk

= > psA) (k=1 w(4) + 1 22;) - b ()
ACS\i
|Al=k—1

= Z Ps\i(A) (k —1- CC(A)) + (1 = 2z;) Z ps\i(4) — hg\i($>
ACS\i ACS\i
[A]l=k—1 |A|=k—1

= (1-20)Qi @) — (W) — W (@)
= (1-22)Q}50 (0) - Q5. @) (2(S\ 1) — (k= 1))
= Q@) (k —a(8) — ;)

where we use (3.25) (or equivalently Lemma 3.3) in the second to last line.

‘We now set
Vhi(z) = 0.

y (3.29), this is equivalent to

Qs\z( )( _x(S)—fEi):O Vi e S.

Notice that

Qi) (1) =0 <= > psi(4) =0 <= psii(A) =0 VACS\i|Al=k—1

ACS\i
|Al=k—1

— [=s I (-w)=0 VACS,|Al=k-1
JEA  FE(S\i)\A

zi=k—x(S) Vies.
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(3.29)

(3.30)

We can see this implies that such a solution lies on the boundary of [0,1]°, since there exists an
index j € S such that x; = 0 or x; = 1. Since we are focusing on extrema in the interior, we may
disregard that solution. Hence, by (3.30),



By setting x; =t for every i € S, we get
t=k—(n—1)t < t=k/n < z,=k/n Viebs.

Therefore, h%(z) has a unique extremum in the interior of [0, 1]% at the point (k/n,...,k/n).

It is left to prove that this point is a local maximum. We do that by computing the Hessian
matrix H(z) and showing that H(k/n,...,k/n) is negative definite. Note that H(z) is a (n — 1) x
(n — 1) matrix defined by:

O?hk(z)
H(x);; = 222
({L‘) 2] axzaxj

By Lemma A.1 and Lemma A.2, which can be found in the Appendix, we are able to compute the
Hessian:

82hk; n—2\ (kN fn—k\"T ,
i am=2() () (22) T wes e
and k—1 k—1
d%*hk n—2\(k\  [(n—-k\"" o
D0, (k/n,...,k/n) = _<k5—1> (n> ( - > for i # j (3.32)
Therefore,
2 11 1
1 2 1 ... 1
H(k/n,....,k/n)=—c| . | =—cA (3.33)
1 11 2
where

()R

Our goal is to show that H(k/n,...,k/n) € R®=DX(=1) s negative-definite. Notice that A
is an eigenvalue of H(k/n,...,k/n) with corresponding eigenvector v € R"~! if and only if —\/c
is an eigenvalue of A with the same eigenvector v € R*~!. It is thus enough to show that A is
positive-definite, i.e. all the eigenvalues of A are positive.

Notice that A = I,,_1 + J,,_1, where I,,_1 and J,_1 are respectively the identity matrix and the

all-ones matrix of size (n — 1) x (n — 1). In particular, we may rewrite this as
A=TI, 1 +ee” (3.34)

where e € R"~! is the all-ones vector.
Let p be an eigenvalue of A with corresponding eigenvector v. Then

Av=pv = v+ (e'v)e =
— (eTv)e=(n—1)v.
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o If 4 = 1, the corresponding eigenspace is {v € R*™1 | ¢Tv = 0}. This eigenspace is a
hyperplane of dimension n — 2, which means that there exists n — 2 linearly independent
eigenvectors corresponding to the eigenvalue p = 1.

o If 1 # 1, then we see that e and v are collinear, which means that e is an eigenvector
corresponding to u. We compute the value of u:

Ae=pe <= e+ (efe)e=pe <= e+ (n—1)e=pe < p=n.

Hence, the spectrum of A is equal to {1,n}, where the multiplicity of the eigenvalue 1 is n —
2, whereas the multiplicity of the eigenvalue n is 1. We have therefore just proven that A is
positive-definite, which, by (3.33), implies that H(k/n,...,k/n) is negative-definite and concludes
the proof. O

We need one more lemma before being able to prove Theorem 3.3. Recall that

ow=s () (-2 ()

Lemma 3.4. The following holds for any n > 2 and k € {1,...,n—1}:

alk,n) > a(k—1,n—-1) (3.35)
alk,n) > a(k,n—1) (3.36)
Proof of Lemma 3.4. First, notice that the function g(z ( ) is strictly increasing for x > 1.

Indeed, by using the strict inequality log(l + z) < x for any x > 0, we see that the derivative of
log(g(x)) is strictly positive:

L iog(g@)) = Latog (LL) =tog (L2 ) 4oL og (221) 4 L
dx B\\* e S x =08 x Tr 12 & T z—1
1 T 1 1
= —— -1 = —— —log(1+—=) >0.
—1 Og(xl) 1 °g< +xl)>0

We first prove (3.35). If k =1, then a(k — 1,n — 1) = 0 and the statement clearly holds. We may
thus assume k > 1. Then,

et el () O G )

We now prove (3.36). If Kk =n — 1, then a(k,n — 1) = 0 and the statement clearly holds. We may
thus assume k < n — 1. Then,
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- ()T ) ) (Y

n (n—k)t=k(n-1)n
n—k nvtl (n—1—Fk)n-k
—k

() (55)
g(n)

:m>l.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. We prove the statement by induction on n > 2. The base case corresponds
ton =2 and k = 1. In this case, we get S = {1} and

hE(z) = z1(1 — z1).

It is easy to see that this is a parabola which attains its maximum at the point 21 = 1/2 over the
unit interval [0, 1]. Moreover the function value at that point is 1/4 = a(1,2).

We now prove the induction step. Let n > 3 and k € {1,...,n — 1}, and assume by induction
hypothesis that the statement holds for any 2 < n’ <n and k € {1,2,...,n' —1}.

By Proposition 3.2, h%(z) has a unique extremum (in particular a local maximum) in the interior
of [0,1]° at the point (k/n, ..., k/n). We first show that the function h%(x) evaluated at that point
is indeed equal to a(k,n).

k n—1—k
-1\ [k k k
WE(k/n,... k/n)= (" =) (-2 k— k-
st = (") () (=5) (k4)
. n—1 E k - E n—k
N k n n (3.37)
n—k(n\ (k\" k"
n \k) \n n
The only thing left to prove is that any point on the boundary of [0,1]° has a lower function

value than a(k,n). A point = € [0,1]° lies on the boundary if there exists i € S such that z; = 0
or x; = 1.

e Suppose there exists i € S such that z; = 0. For any set A C S containing i, we get pg(A4) = 0.
Hence:

Ws(x) = Y psWk—z(A)= Y psulA)(k—2(A) = hf, ().

ACS,|A|=k ACS\i,|A|l=k

If k=n—1, then h’g\i(m‘) = 0. We then clearly get h¥(z) = h’g;\i(x) =0 < alk,n).
If kK < n —1, then by induction hypothesis and Lemma 3.4,

hE(z) = h’g\i(x) <alk,n-1) < a(k,n).
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e Suppose there exists i € S such that x; = 1. For any set A C S not containing i, we get
ps(A) = 0. Hence:

We(@)= Y ps(A)(k—x(4) = Y ps(4)(k —z(A))

ACS,|Al=k ACS

[A[=k
i€A
= D psulA\D(k—1—z(A\iD) = Y psulA)(k—1-z(4)
AcCs ACS\i
|Al=k |A|l=k—1
i€A
= h’;@l (z).
If k=1, then hlgizl(x) = 0. We then clearly get h&(z) = h’g@l(x) =0 < a(k,n).

If £ > 1, then by induction hypothesis and Lemma 3.4,

Rk (z) = hg@l(x) <alk-1,n-1) < alk,n).

3.5 Proof of Theorem 3.1

We now have all the pieces in order to prove Theorem 3.2 and, therefore, Theorem 3.1. Indeed, the
two main building blocks for this proof are Lemma 3.2 and Theorem 3.3. Let us restate the main
theorems for convenience.

r

~

Theorem (Theorem 3.1). Algorithm 3.1 is a c-balanced CR scheme for the uniform matroid
of rank k on n elements (denoted by UF ), where:

c=1- <Z) <1 - :)nﬂk <7]z>k =: c(k,n). (3.38)

We have already argued in Section 3.2 that proving Theorem 3.2 would imply Theorem 3.1.

\.

Theorem (Theorem 3.2). The following mazimization problem satisfies

max G(x) = (Z) (1 - i)nﬂ_k (fl)k =1 c(k,n) (3.39)

and the maximum is attained at the point

(x1,...,2n) = (k/n,...,k/n) € Pr.

Proof of Theorem 3.2. By Lemma 3.2, we get that for any x € Pr (since Pz C ]31),

Go) < Y ps(A)(1 - a(4)). (3.40)

AcS
[A|=k
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Moreover, for every x € Py satisfying z, = k — z(5), equality holds in (3.40).
By Theorem 3.3, we get that for any x € Pr,

S ps(A)(1 - 2(4)) < 1 - c(k,n). (3.41)
ACS
A=k

Equality holds in (3.41) if #; = k/n for every ¢ € S. This holds because the above expression does
not depend on x, and the projection of the polytope Pz to the S coordinates is included in the
unit hypercube [0, 1]°.

Therefore, by combining (3.40) and (3.41), we get that for every x € Py:

G(z) <1—c(k,n).
Moreover, for the point x; = k/n for every i € N, equality holds:
G(k/n,....k/n)=1—c(k,n).

Indeed, (3.40) holds with equality because 2, = k—x(.9) is satisfied (since k—z(S) = k—(n—1)k/n =
k/n) and (3.41) also holds with equality because z; = k/n for every i € S. O

3.6 Optimality
We prove in this section that Algorithm 3.1 is actually optimal for UF.

Theorem 3.4. There does not ezist a c-balanced CR scheme for the uniform matroid of
rank k on n elements (denoted by UF) satisfying:

RO Oh

The proof uses a similar argument to the one used for U} in [5]. It relies on computing the value
E[r(R(z)], i.e. the expected rank of the random set R(z). However, for general values of k > 1,
the argument becomes more involved than the one presented in [5] for U!. The proof we present
surprisingly uses Lemma 3.3.

Corollary (of Lemma 3.3). Let © € Pr be the point x; = k/n Vi € N. Then,

—1

hi(z) =) Qi(x)(k ). (3.42)

%

N

I
o

Proof of Theorem 3.4. We let 7 be an arbitrary c-balanced CR scheme for U, and we fix the point
x; =— for every i € N.
n
Clearly, x € Pr = {z € [0,1]N | 21 + -+ + 3, < k}. We let R(x) be the random set satisfying

Pli € R(z)] = z; for each i independently, and denote by I := 7, (R(x)) the set returned by the CR
scheme 7. By definition of a CR scheme,

E[|I]] < E[r(R(x))]
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and
. nck
E[|I]] = ZIP’[Z el > Zcmi == ck.
iEN 1EN

We therefore get the following upper bound for c:

E[r(R(z))]
¢S — (3.43)
Moreover, recall that
P|R(z)| =i] = Y pn(A) = Qiy(@). (3.44)
ACN
|A]=i
Using (3.42) and (3.44), we get
k k—1
E[r(R(2))] =) i Plr(R(z)) =i] = ) i P[|R(x)| =] + k P[|R(z)| > K]
=0 1=0
k—1
=Y i BlIR@)| =] +k (1~ B[|R(@)| <k~ 1])
- k-1 k—1
=k+Y iP[|R(x)| =i -k _ P[R(z)| =]
i=0 i=0
k-1 '
= k=) (k- )Qx(x) by (3.44)
i=0
=k —hk(2) by (3.42)
—k— S pa(A)k - a(4))
ACN,|Al=k

e LT
W)

Plugging the obtained formula into (3.43) leads to the desired result: an arbitrary c-balanced CR
scheme for U has to satisfy
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3.7 Monotonicity

We prove in this subsection that Algorithm 3.1 is a monotone CR scheme. As a reminder, this is
an important property for a CR scheme to have in order to be able to use it in an approximation
algorithm for the constrained submodular maximization problem.

Theorem 3.5. Algorithm 3.1 is a monotone CR scheme for UF, i.e. for every x € Pr and
e € AC B C supp(z),
Ple € m,(A)] > Ple € 7,(B)].

We start by giving an explicit formula for the probabilities above.
Lemma 3.5. The following holds for any e € A and |A| > k:
k—x, z(A\e)

Fle € m( =" * mgar - oy
Proof.
Pleem(A)]= > qa(B)= > qa(BUe)

BCA BCA\e
|Bl=Fk |Bl=k-1
ecB

B 1 z(A\e) —x(B) z(B)+we

- Bg\e (™ (” A~k k >
|B|l=k—1

B 1 Cxe | z(A\e) . 1 1

= B;\e (™ (1 kA -k (B)(|A|—k+k))
|B|=k—1

B 1 k—x, x(A\e)_:E | Al

L @ (= T ) (349)
|Bl=k—1

We now use Equation (3.2) in a slightly modified form:

Bg\ 2(B) = (17 )a(ave). (3.46)
|Bl=k—1

The only part in the sum (3.45) that depends on B is the last term with x(B). Hence, by plugging-in
(3.46) into (3.45), we get:

(2)eeemn= (220 (5) + (50300 - (gt
3.47

We now use the formula



to remove all the binomial coefficients from (3.47). We thus get:

|A] k—z. x(A\e) k-1 |A]

T Hleem(Al = ==+ T~ T A= AN
_k—ze z(A\e) [, |Al(k-1)
Tk Ak (1 <|A|1>k>
k- z(A\e)
FTRAT- D)

This implies the desired result:

k- z(A\e)
1Al 1A[A = 1)

We can now prove Theorem 3.5.
Proof of Theorem 8.5. Let A C N and e € A. If |A| <k, then
Ple € m.(A)] =1

and the theorem trivially holds. We therefore suppose that |A| > k. In order to prove the theorem,
it is clearly enough to show that for any f ¢ A,

Ple € m,(A)] > Ple € m, (AU f)]. (3.48)
We show the difference of those two terms is greater than 0 by using Lemma 3.5 for both terms:

k— . z(A\e)  k—ze wz(A\e)t+ay
AL A[(AL =) AT+ (AT + D)4

Ple € m,(A)] —Ple € m.(AU f)] =

k—z. k—ux, Ty 1 1
A AT <|A|+1>A|+°’”<A\e><A|<|A—1> <A|+1>|A|)
AL+ )k~ 2.) — [A[(k— ) —2; | 20(A\e)
A4+ 1) AR —1)/4]
:k—a:e—xf 2z(A\ e)
AT+ 1) T (AR~ 1)/4]
> 0.

The last inequality holds because since x € Pr = {z € [0,1]V | #(N) < k}, we have
Te+ap <K,

and all the other terms are positive. We have thus shown (3.48) which is enough to prove the

theorem.
O

41



4 An optimal monotone contention resolution scheme for
partition matroids

4.1 The CR scheme

The CR scheme for uniform matroids defined in Algorithm 3.1 can be naturally extended to a CR
scheme for partition matroids. This is not surprising since partition matroids can be seen as a direct
sum of uniform matroids.

We define the framework for a partition matroid M = (N, 7).

e N ={1,...,n} is the ground set and it admits the partition N = D; Ll --- U Dj. Moreover,
each set D; (called a block of the partition matroid) has an associated integer d; € Z>, called
the capacity of the block.

o I = {A CNI||AND;| <d;, Vie{l,.. ,k}} are the independent sets.
o Pr= {x €0, 1)V |z(D;) <d; Vied{l,..., k}} is the matroid polytope.

Notice that, for every i, the restriction of the partition matroid to a subset D; is a uniform matroid,
ie.

M

where U(k,n) := UF is the uniform matroid of rank k on n elements.
We fix the following convenient notations:

p; = U(d;, |D;l) Vie{l,... k} (4.1)

o« P = {y e o>
Notice that PI(” is the canonical projection of Pz onto the D; coordinates.

y(D;) < d;} is the matroid polytope of the uniform matroid M|p,.

e For any x € Pz, we denote by z(") := x| p, the restriction of x to the D; coordinates. Notice
then that () € PI(Z).

We remind the following definitions that we already used for uniform matroids. Forany B C A C N,

<|é'|)(

pa(B) =[]z ] (1-)=PRa(x)=B] (4.3)

i€B  i€A\B

ga(B) == 1+ Z(A\ B) — gz(B)) (4.2)

and

where R4 (x) is the random set obtained by rounding each coordinate of 2|4 to 1 with probability
x;. In other words, Ra(x) = R(z) N A. Of course, Ry(x) is simply equal to the standard R(z).

We denote by e
c(k,n) ==1— (Z) (1 - :) (i) (4.4)

the optimal balancedness for UF, the uniform matroid of rank k on n elements.
The main result of this section is the following.
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Algorithm 4.1 CR Scheme 7 for partition matroids

Input: A point = € Pr and a set A C supp(z)
Output: An independent set I € Z such that I C A.

I+ 0
forie{1,...k} do
Set A, +— AND;

else
Pick any B C A; of size |B| = d; with probability g4, (B)
I+~ 1UB
return /
A T2 (A)
1 2 3 1 @ 3
D; Dy D, D,

) ®® = (@0
) @ (o DRORO

D D

3

Figure 9: An example run of the CR scheme with d; = 2,ds =1,d3 =1

Theorem 4.1. Algorithm 4.1 is a c-balanced CR scheme for the partition matroid M =
(N,I), where

c= min c(d;,|D;|)
ie{l,....k}

Proof. Let e € N. We need to show that for every x € Pr with x, > 0,

Ple € m,(R(x)) | e € R(x)] > ie{min o c(d;, | Dil).

EEREE)

This is equivalent to showing that for every x € Pr with xz, > 0,

Ple ¢ mo(R(x)) | e € R(2)] < max ('Z"') (1 - éﬁ’i')lmﬂdi (|gii|>di . (45)

Since all the D;’s form a partition of N, we let j € {1,...,k} be the unique index such that e € D;.
We compute:
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Ple ¢ me(R(2)) | e € R(x)] = %IP’[G ¢ mx(R(2)), e € R(x), [Rp, ()| > dj]

€

= LPle ¢ mo(R(@)),¢ € Rp, (2),| R, (2)] > ]

= 3 Fled m(RG), Ro,(0) = AUd
¢ ACD]'\G
|A|>d;
= 3" Ple¢ m(R@)| Rp,(r) = AUe F[Rp, (x) = AU
€ ACDj\e

|A|>d;

= Y YD g (R(@) | R, (2) = AU

Te
ACDj\e
|A|>d;
= > popel4) Y qave(B) =G(x). (4.6)
ACDj\e BCA
|A|>d; |Bl=d;

Note that this is exactly the function G(z) that we defined for uniform matroids in (3.7). The
only difference being that our uniform matroid is now on the ground set D; (instead of N) and
of rank d; (instead of k). We do not explicitly write down the dependence on the ground set and
the rank in the definition of G(x) for simplicity of notation. Moreover, notice that expression (4.6)
only depends on the z-variables in D;. Hence, because of Theorem 3.2, we get:

max{G(z) | z € Pr} = max{G(z) | z € PY)} = ('Sj) (1 - |gjj|> e (éj’j)dj (4.7)

We therefore get the desired result: for any x € Pz and e € supp(x),

Ple ¢ m,(R(z)) | e € R(x)] < e (%I) (1 - gA)Diﬂdi (z‘gii')di

which is indeed what we wanted to show in (4.5).

4.2 Optimality

We now show that this factor is optimal. Again, this follows naturally from the proof of the uniform
matroid case.

Theorem 4.2. There does not exist a c-balanced CR scheme for the partition matroid M
satisfying:

> i d;,|D;
¢>  min old;|Di)
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Proof. Let m be an arbitrary c-balanced CR scheme for the partition matroid M. We take j €
argminge, . p1¢(di, |D;|) and define the point = € Pr by

o dj/|D]‘ if(iGDj.
‘o otherwise.

As usual, we let R(z) be the random set obtained by rounding independently each coordinate of x
to one with probability .. Moreover, we denote by I := 7, (R(x)) the independent set returned by
the CR scheme 7. We have

cd; = Z CTo = Z cwe < Z Ple € I] = E[|I|] < E[r(R(z))]. (4.8)

e€D; eeEN eeEN

Moreover, notice that by our choice of the point x € Pz, we have
Elr(R(2))] = E|r(Rp, ())].

Hence, by Theorem 3.4, we get that

E[r(R(z))] = d; (1 _ ('ZJ") (1 _ &)lelH_dj (@)d> . (4.9)

Plugging, (4.9) into (4.8), we obtain the desired result:

c < c(dj,|Dj|) = ie{r{link} c(d;, | D).

yeeey

4.3 Monotonicity

We prove in this subsection that the CR scheme for partition matroids is monotone. Once again,
this follows from the result about monotonicity for uniform matroids: Theorem 3.5.

Theorem 4.3. Algorithm 4.1 is a monotone CR scheme for the partition matroid M, i.e.
for every x € Pr and e € A C B C supp(z),

Ple € 7, (A)] > Ple € m,(B)].

Proof. We let x € Pr,let e € A C B and let j € {1,...,k} be the unique index such that e € D;.
We denote in this proof the CR scheme applied to the partition matroid M (Algorithm 4.1) by 7.
Moreover, we denote the CR scheme applied to the uniform matroid of rank d; on the ground set
D; (Algorithm 3.1) by p,.

We denote A; := AN D; and B; := BN D;. By construction of both algorithms, it is clear that

Ple € m,(A)] = Ple € pa(4;)]
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and
Ple € m,(B)] = Ple € p,(B;)].

Moreover, since A; C Bj, by Theorem 3.5:
Ble € pa(4;)] 2 Ple € p.(B))],
which implies the desired result by the previous two equalities:

Ple € m.(A)] > Ple € m,(B)].
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5 Conclusion and outlook

To sum up, we have in this thesis looked at the problem of designing contention resolution schemes
for different matroids. The goal was to try to improve the balancedness of 1 — 1/e provided for a
general matroid in [5]. We have managed to do that for three cases: matroids with disjoint circuits,
uniform matroids and partition matroids.

We provide in Section 2 an optimal monotone CR scheme for matroids with disjoint circuits
with a balancedness factor of 1 — %(1 — %)g ~1. The idea of the algorithm is quite simple: we check
which cycles are completely included in the random set R(z). For these cycles, we remove one
element randomly from each of them with a probability that depends on the input point x € Pr.
The proof for the balancedness is a consequence of the arithmetic-geometric mean inequality. We
then prove optimality of this balancedness, as well as monotonicity of the scheme. We also discuss
a couple of interesting applications to graphic matroids.

In Section 3, we design an optimal monotone CR scheme for any uniform matroid of rank &

on n elements. The balancedness of this scheme is 1 — (Z) (1 — %)nﬂ_k (%)k := ¢(k,n), which

generalizes the known optimal balancedness for the uniform matroid of rank one of 1 — (1 —1/n)".
Asymptotically, c(k,n) ——s 1 —e ¥ k¥ /k!, which also generalizes the asymptotic 1—1/e for k = 1.
The idea is again quite simple: we simply check whether the random set R(x) has more than k
elements and keep k of those randomly with a probability which depends on the input point z € Pr.
The proof of the balancedness is non-trivial and the main idea consists of looking at the complement
probability Ple ¢ 7. (R(x)) | e € R(x)], rewriting it as a function of n variables, and maximizing this
multivariable function over the uniform matroid polytope Pr. We first maximize over the variable
z. while keeping all the other variables fixed. We then get an expression of n — 1 variables and
maximize that by simply finding the unique extremum (which is a local maximum) in the interior
of the domain, and finally checking that any point in the boundary has a lower function value than
that point. We also provide a proof of optimality for the balancedness which surprisingly uses a
result that we found during the second step of the maximization problem discussed above. Finally,
we also show the CR scheme is monotone.

In Section 4, we show that we can generalize the CR scheme we constructed for uniform ma-
troids to partition matroids. The arguments all follow quite naturally and the balancedness is of
min; ¢(d;, | D;|), where the D;’s are the blocks of the partition matroid with each D, having capacity
d;. The scheme turns out to be optimal and monotone in this case as well.

The idea of designing CR schemes by assigning a certain probability depending on the input
point x € Pz to every independent subset of the input set is the central idea of every CR scheme in
this thesis. It might be possible to use that idea to design other CR schemes for different matroids,
or even different independence families. All the proofs of optimality also follow the same basic
principle and a generalization ot that argument to other matroids might be something doable as
well.
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A Appendix

We give here the computations (Lemma A.1 and Lemma A.2) that allow us to compute the Hessian
matrix

0*1g (@)
H(m)i’j n 8331633] '
at the point (k/n,...,k/n) of the function
he(x) = > ps(A)(k — 2(A)).
ACS

[A[=k

These two results were used for the proof of Proposition 3.2.
Note that we have already computed in (3.29) that

Ohg ()
8.Z‘i

— Q@) (k- a(8)~ )  vies. (A1)

where

Q)= 3 ps(A).

ACS,|Al=k

A useful and straightforward computation is the following:

QL(k/n, ... k/n) = (”Z_l> (i)l (”;’“)n”. (A.2)

Lemma A.1. The diagonal terms of the Hessian matriz at the point (k/n, ..., k/n) satisfy:

&2ht; n—2\ (kN fn—k\"T" ,
722 (k:/n,...,k/n)?(k_1> (n> ( - ) Vie S.

Proof. Since the term Q’g@l(a@) in (A.1) does not depend on x;, we easily derive:

9*his(x)
Oz?

=-2Q&,(z) VieSs. (A.3)

Therefore, by (A.2), evaluating expression (A.3) at the point (k/n,...,k/n) gives us:

&2hk; n—2\ (kN (n—k\"T ,
P b =-2(2 %) (£) 7 (225) e

2

O

Lemma A.2. The non-diagonal terms of the Hessian matriz at the point (k/n, ..., k/n) satisfy:

;zgi (k/n,....k/n) =— <Z : i) (fl)kl (n ; k>nk1 fori#j (A.4)
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Proof. We first show that
Qs\l( )7‘%3 Qs\zj( ) ( )Qs\lj( )

Indeed,

Q’é{}(:c)= Z Ps\i(4)

ACS\i
|A|=k—1

= Z ps\i(A) + Z ps\i(4)
ACS\i ACS\i
|A|=k—1 |A|=k—1
JEA J¢A

=T Z pS\z(A\])-i-(]_—xJ) Z pS\i,j(A)

ACS\i AcCS\i
|Al=k—1 |A|=k—1
JEA JgA

=z Z psvi,;(B) + (1 — ) Z Ps\i,; (A

BCS\iaj ACS\i,j
|B|= |[Al=k—1

=Ty Qs\”( z)+ (1 - )Qs\”( ).

We can therefore compute the non-diagonal terms of H(x) by (A.1) and (A.5). For ¢ # j,

21k T
%C:J%(CCZ) B ( ’g;z?]( T) — QS\Z]( )) (k —2(S) —z:) — ’g\’l( ?)

= (@52 (@) - QL @) (k= 2(8) — @) — 25 Q2 (@)

= Q52 @) (k- w(8) — 2 — ;) - Q&L (@ )(k+1—x<s>—xi—mj).

We can now evaluate the last expression at the point (k/n,...,k/n) with (A.2):

S =) () () -GG

SON GO R (GRS
SIONCT

o1

>7L—k:—l



