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Abstract

Submodular function maximization became a very interesting and well-studied area in recent
years due to a vast number of applications. A relaxation and rounding framework is now a standard
and e↵ective way to tackle the constrained submodular maximization problem subject to indepen-
dence constraints. In particular, a general and successful tool for the rounding part are contention
resolution schemes (or CR schemes). These take a fractional point in a relaxation polytope, round
each coordinate of that point independently to get a possibly non-feasible set, and then drop some
elements randomly in order to satisfy the independence constraints. A CR scheme is c-balanced if
each element included in the randomly rounded set is kept with probability at least c. Another
important property for a CR scheme to have is monotonicity.

A 1 � (1 � 1/n)n-balanced CR scheme is already known for the uniform matroid of rank one,
and it is also known that this is optimal. Moreover, a (1 � 1/e)-balanced CR scheme has been
provided for a general matroid and is asymptotically optimal, in the sense that one cannot hope to
get a better balancedness factor by designing a CR scheme for any general matroid.

The main goal of this thesis is to find classes of matroids where the above 1� 1/e balancedness
factor can be improved. We provide simple monotone CR schemes with an improved balancedness
factor for three classes of matroids: uniform matroids (of any rank), partition matroids, and ma-
troids with pairwise disjoint circuits. In addition, we prove that the balancedness that we get for
each of them is optimal, i.e. one cannot hope to design higher-balanced CR schemes for these three
cases. In particular, for uniform matroids, the factor we provide generalizes the previously known

result of 1� (1�1/n)n for the rank one case to 1�
�n
k

� �
1� k

n

�n+1�k
( kn )

k for the rank k case. For a

fixed value of k, this expression converges to 1� e
�k kk

k! as n tends to infinity, which also generalizes
the asymptotical 1� 1/e for the rank one case.
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1 Introduction

1.1 Constrained submodular maximization

Submodular functions have received a lot of attention in recent years in very diverse fields. This is
due to the fact that they capture a natural property of set functions: diminishing marginal returns.
Applications of submodular functions are very vast: algorithmic game theory, machine learning and
combinatorial optimization are three of the main fields where they are used, see for example [15],
[16], [19]. The formal definition is the following.

Definition 1.1. Given a ground set N = {1, . . . , n}, a set function f : 2N 7! R is submodular if:

f(A [ {i})� f(A) � f(B [ {i})� f(B) 8A ⇢ B ⇢ N, i /2 B.

In words, we take two subsets A,B ⇢ N , where one is contained in the other (A ⇢ B), as well as
an element i 2 N which does not lie in either of A and B. The submodularity property states that
the marginal gain obtained by adding i to A is always bigger than the marginal gain obtained by
adding i to B.

Remark. The submodularity property can equivalently be restated as

f(A) + f(B) � f(A [B) + f(A \B) 8A,B ⇢ N.

Even though this statement might seem simpler, it is harder to understand intuitively.

Let us now describe the framework for the constrained submodular maximization problem. We are
given:

• A finite set N = {1, ..., n}, called a ground set.

• A family I ⇢ 2N of feasible sets (or independent sets).

• A non-negative submodular set function f : 2N 7! R�0. We can equivalently see this mapping
as f : {0, 1}N 7! R�0 by associating to every set A ⇢ N its characteristic vector 1A 2 {0, 1}N .

The constrained submodular maximization problem is then

max
S2I

f(S). (1.1)

In words, we want to maximize a non-negative submodular function subject to independence con-
straints captured by I. We will assume throughout this thesis that I is a down-closed family, i.e.
if B ⇢ A and A 2 I, then B 2 I. A successful approach for tackling this problem consists of a
relaxation and rounding framework (see [4]). We need the following definition before stating this
approach.

Definition 1.2. The polytope PI ⇢ [0, 1]N corresponding to the independence family I is the
convex hull of the characteristic vectors of independent sets, i.e.

PI := conv({1S | S 2 I}).

Moreover, a polytope P ⇢ [0, 1]N is a relaxation of PI (or a relaxation of I) if the integer points
are the same, i.e. P \ {0, 1}N = PI \ {0, 1}N . Notice this implies that PI ⇢ P .
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We now state the relaxation and rounding framework for the constrained submodular maxi-
mization problem.

1. We first relax the problem maxS2I f(S) to the problem

maxF (x)

x 2 P

where F : [0, 1]N 7! R�0 is a suitable extension of f : {0, 1}N 7! R�0, i.e. the function F

needs to satisfy F |{0,1}N = f .

We approximately solve this maximization problem and get a fractional point x 2 P .

2. We then round this fractional point x 2 P into an integral feasible solution 1S 2 P \ {0, 1}N
corresponding to an independent set S 2 I.

If f is modular, there exists a weight function w : N 7! R such that for any A ⇢ N , f(A) =P
i2A wi. Hence, a natural choice for the extension F is simply the linear function F (x) = w

T
x.

The relaxation problem is then a linear program for which we can compute an exact solution x
⇤ in

polynomial time (provided that P is a solvable polytope).
If f is submodular, a successful extension for maximization problems is the multilinear extension

FML (first introduced in [4]). It is defined as follows:

FML(x) = E[f(R(x))] =
X

A⇢N

f(A)
Y

i2A

xi

Y

j /2A

(1� xj)

where R(x) ⇢ N is a random set obtained by independently picking each element i with probability
xi. Moreover, it was shown in [3] that if P is the matroid polytope and f is monotone (i.e.
f(A)  f(B) for A ⇢ B), there is an approximation algorithm of a factor of (1 � 1/e) for the
first part of the relaxation and rounding framework: maximizing the multilinear extension over the
matroid polytope. Other approximation factors for the non-monotone case and di↵erent constraints
were shown in [5].

We are in this thesis interested in the second part of this relaxation and rounding recipe. Hence
the main question of interest is the following. Given a fractional point x 2 P , how can we round
this point into an integral point 1S 2 P \{0, 1}N corresponding to an independent set S 2 I without
losing much objective value? Contention resolution schemes, introduced in [5], are a powerful and
versatile tool to tackle this problem.

1.2 Contention resolution schemes

We present in this subsection a general framework, called contention resolution schemes (or CR
schemes) and introduced in [5], as one possible answer to the aforementioned question. We are
given a fractional point x 2 P and round it to a feasible integral point in the following way.

1. We first obtain a random set R(x) ⇢ N by independently including each element i 2 N with
probability xi.

2. We then remove some elements from the set R(x) using an algorithm ⇡x such that the returned
set I := ⇡x(R(x)) is an independent set. This algorithm can either be deterministic or
randomized.
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Definition 1.3 ([5]). ⇡ = (⇡x)x2PI is a c-balanced contention resolution scheme for the polytope
P if for every x 2 P , ⇡x is an algorithm that takes as input a subset A ⇢ supp(x) and outputs an
independent set I := ⇡x(A) 2 I contained in A such that

P
h
i 2 ⇡x(R(x)) | i 2 R(x)

i
� c 8i 2 supp(x). (1.2)

Moreover, a contention resolution scheme is monotone if for any x 2 P :

P[i 2 ⇡x(A)] � P[i 2 ⇡x(B)] for any i 2 A ⇢ B ⇢ supp(x). (1.3)

Remark. Condition (1.2) can be equivalently restated as:

P
h
i 2 ⇡x(R(x))

i
� c xi 8i 2 N. (1.4)

Indeed,

P
h
i 2 ⇡x(R(x)) | i 2 R(x)

i
� c () 1

xi
P
h
i 2 ⇡x(R(x)), i 2 R(x)

i
� c

() 1

xi
P
h
i 2 ⇡x(R(x))

i
� c

() P
h
i 2 ⇡x(R(x))

i
� c xi.

Remark. In all the results in our thesis, we work directly with an inequality description of PI = P .
Therefore, when the polytope PI is clear from the context, we will sometimes omit to say that
the contention resolution scheme is with respect to that polytope. For example, we will say ”a
contention resolution scheme for uniform matroids” instead of ”a contention resolution scheme for
the matroid polytope of a uniform matroid”.

A c-balanced CR scheme then gives rise to a natural approximation algorithm for the problem
maxS2I f(S) if f is a modular function, provided that the relaxation polytope P for I is solvable.

Theorem 1.1 ([5]). Let ⇡ = (⇡x)x2P be a c-balanced CR scheme for a solvable relaxation P of
a down-closed family I on a ground set N . Let f : 2N 7! R�0 be a modular function. Using
the relaxation and rounding framework, we obtain a randomized algorithm returning a set I 2 I
satisfying E(f(I)) � c maxS2I f(S).

Proof. Since f is modular, there exists a weight function w : N 7! R such that for any A ⇢ N ,
f(A) =

P
i2A wi. As mentioned in Subsection 1.1, we define the relaxation maxx2P w

T
x and get

an optimal solution x
⇤ 2 P using linear programming if P is a solvable polytope. We then apply

the CR scheme ⇡ to get a feasible set I := ⇡x⇤(R(x⇤)).

E[f(I)] = E
"
X

i2I

wi

#
= E

"
X

i2N

1{i2I}wi

#
=
X

i2N

P[i 2 I] wi

�
X

i2N

c x
⇤
i wi = c

X

i2N

x
⇤
i wi = c (wT

x
⇤)

= c max
x2P

w
T
x � c max

S2I
f(S)

where the first inequality follows from the c-balancedness of the scheme ⇡ and the second one from
the relaxation problem.
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A natural question that arises is the following. Can we extend Theorem 1.1 to the setting where
f is submodular and the relaxation problem is maxx2P FML(x), where FML is the multilinear
relaxation defined in Subsection 1.1? It turns the answer is yes, provided that the CR scheme ⇡ is
monotone.

Theorem 1.2 ([5]). Let ⇡ = (⇡x)x2PI be a c-balanced monotone CR scheme for a relaxation P of a
down-closed family I on a ground set N . Let f : 2N 7! R�0 be a non-negative submodular function.
We suppose we have an ↵-approximation algorithm for the relaxation problem maxx2P FML(x)
and let x

⇤ 2 P be an ↵-approximate optimal solution. Then I := ⇡
⇤
x(R(x⇤)) satisfies E(f(I)) �

c FML(x⇤) � ↵c maxS2I f(S).

Thus, monotonicity is an important and desirable property for a CR scheme to have if we want to
apply it in the context of constrained submodular maximization.

1.3 Matroids

We introduce in this subsection a general background on matroids. For more on matroids, the
interested reader is invited to consult [17].

Definition 1.4. A matroid M is a pair (N, I) consisting of a ground set N and a non-empty
family of independent sets I ⇢ 2N which satisfy:

• If A 2 I and B ⇢ A, then B 2 I.

• If A 2 I and B 2 I with |A| > |B|, then 9 i 2 A\B such that B [ {i} 2 I.

The first condition simply means that I is a down-closed family. The second condition can be
stated in words as: if B is independent, and there exists a larger independent set A, then B can be
extended by adding an element of A. Therefore, any non-maximum (cardinality-wise) independent
set can be extended. This means that every maximal (inclusion-wise) independent set is maximum
(i.e. of maximum cardinality). Such a set is called a base of the matroid.

Definition 1.5. A base of the matroid M = (N, I) is an independent set B 2 I of maximum
cardinality. Equivalently, it is a maximal inclusion-wise independent set.

A base of a matroid can thus be found by a greedy process: start with the empty set and add
elements one by one arbitrarily while keeping independence.

Definition 1.6. Let M = (N, I) be a matroid. The rank function r : 2N 7! N is defined as
r(A) = max{|S| : S ⇢ A,S 2 I}

The rank function computes, for any subset A of the ground set, the cardinality of a maximal
independent set included in A.

Definition 1.7. A circuit C of a matroid M = (N, I) is an inclusion-wise minimal dependent set.

Therefore, if we remove any element from a circuit, we get an independent set.

Definition 1.8. The girth g of a matroid M = (N, I) is the length of a shortest circuit.

Remark. We have introduced matroids using Definition 1.4, which are called independence axioms.
However, this is not the only way we can define matroids. Indeed, one could have used other sets
of axioms, such as base axioms, or even circuit axioms (see [13] for more details).
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Definition 1.9. (Base axioms) A matroid M is a pair (N,B) where N is a ground set and B is a
non-empty collection of subsets of N , called bases, satisfying:

• For any distinct B1, B2 2 B, we have B1 6⇢ B2 and B2 6⇢ B1, i.e. no base properly contains
another.

• For any B1, B2 2 B, and any x 2 B1, there exists y 2 B2 such that B1 � x+ y 2 B

Definition 1.10. (Circuit axioms) A matroid M is a pair (N, C) where N is a ground set and C
is a non-empty collection of subsets of N , called circuits, satisfying:

• For any distinct C1, C2 2 C, we have C1 6⇢ C2 and C2 6⇢ C1, i.e. no circuit properly contains
another.

• For any C1, C2 2 C, and any x 2 C1 \C2, we have that (C1 [C2)�x contains a member of C.

We now introduce the matroid polytope and give an inequality description for it. The proof of the
inequality description can be found in [6].

Definition 1.11. Let (N, I) be a matroid. The matroid polytope is defined as:

PI := conv({1S : S 2 I}) = {x 2 RN
�0 | x(A)  r(A) 8A ⇢ N}. (1.5)

Let us now give some examples of matroids that will interest us in this thesis. These examples also
nicely illustrate all the di↵erent concepts introduced above.

Example 1.1 (Graphic matroids). Let G = (V,E) be a graph. The graphic matroid MG := (E, I)
is the matroid where the ground set is E and the independent sets are

I := {F ⇢ E | F is a forest}.

In other words, the independent sets are all the acyclic subgraphs of G. If the graph G is connected,
a base of the graphic matroid is a spanning tree. If G has several connected components, a base
corresponds to a spanning tree for each component. The rank of a subset of edges outputs the size
of the maximal forest (or acyclic graph) contained in those edges. A circuit of the graphic matroid
simply corresponds to a cycle of the graph. The girth of this matroid coincides with the usual
notion of girth g for a graph, i.e. the length of a shortest cycle.

Example 1.2 (Uniform matroids). Let N = {1, . . . , n} be a ground set. The uniform matroid of
rank k on n elements Uk

n := (N, I) is the matroid whose independent sets are all the subsets of the
ground set of cardinality at most k:

I := {A ⇢ N | |A|  k}.

A base of Uk
n is simply a subset of size exactly k, and a circuit is subset of size k + 1. The rank of

an independent set is the cardinality of that set, and the rank of a dependent set is k. The girth of
U

k
n is clearly equal to k + 1.
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A base of MG

B1

Another base of MG

B2

A circuit of MG

C1

Another circuit of MG

C2

Figure 1: Some bases and circuits for the graphic matroid of a specific graph.

Example 1.3 (Partition Matroids). Partition matroids are a generalization of uniform matroids.
Suppose the ground set N = {1, . . . , n} is partitioned into k blocks: N = D1 t · · · tDk and each
block Di has a certain capacity di 2 Z�0. The independent sets are then:

I :=
n
A ⇢ N | |A \Di|  di 8i 2 {1, . . . , k}

o
.

The uniform matroid U
k
n is simply a partition matroid with one block N and one capacity k.

Moreover, the restriction of a partition matroid to each block Di is a uniform matroid of rank di

on the ground set Di.

1.4 An introductory example

We start by giving a very easy and natural CR scheme for the graphic matroid polytope of the graph
K3. We believe this nicely exemplifies the concept of a CR scheme and will help build intuition for
the main results of this thesis.

Let G = K3 and let MG = (E, I) be the graphic matroid. We can explicitly write all the
elements, as well as the independent sets.

• E = {e1, e2, e3}

• I =
n
;, {e1}, {e2}, {e3}, {e1, e2}, {e1, e3}, {e2, e3}

o

e3

e2e1

K3

The only non-independent set is:

e3

e2e1

Notice the only set A 2 2E which is not an independent set is the full set E = {e1, e2, e3}. That
is the only ”problematic” set if R(x) happens to be rounded to it in the first step of a CR scheme,
and we will have to build an algorithm which removes at least one element if that happens.
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Let’s now explicitly compute the inequality description of the corresponding matroid polytope
by using (1.5).

PI := {x 2 RE
�0 | x(A)  r(A) 8A ⇢ E}.

For notational simplicity, we denote xi = x(ei) for each i 2 {1, 2, 3}. By writing down all the
constraints and removing the redundant ones, we arrive at the following simple description.

PI =

8
>><

>>:
x 2 RE

�0

x1  1
x2  1
x3  1

x1 + x2 + x3  2

9
>>=

>>;
x1

x2

x3

PI

(1.6)

Each subset of edges A ⇢ E corresponds to one constraint of the matroid polytope. Hence, there are
2E constraints (in addition to the non-negativity constraints) in the original inequality description.
However, as is the case in this example, some constraints can be redundant. In particular, we
did not write the constraints corresponding to {e1, e2} : x1 + x2  2; {e1, e3} : x1 + x3  2;
{e2, e3} : x2 + x3  2. Indeed, these can be obtained by summing the constraints {e1} + {e2};
{e1}+ {e3}; {e2}+ {e3}.

Let’s now define the CR scheme. We give a brief reminder of the framework. We are given a
fractional point x 2 PI . This point can be seen as a weight xi on each edge ei in the graph K3.
We then obtain R(x) by rounding each coordinate independently to 1 with probability xi. R(x)
is now a random vector in {0, 1}E , or, equivalently, a random subset of the edges. However, this
obtained set might not be independent, in which case we need to (randomly) remove some elements
from it in order to make it independent. As mentioned above, the only non-independent set is
E = {e1, e2, e3}. Therefore a very natural oblivious (i.e. which does not depend on the input point
x 2 PI) randomized CR scheme is the following.

Algorithm 1.1.

⇡ : 2E 7! I
⇡(A) = A for any A 6= {e1, e2, e3}

⇡({e1, e2, e3}) =

8
><

>:

{e1, e2} with probability 1/3

{e1, e3} with probability 1/3

{e2, e3} with probability 1/3.

In words, if R(x) happens to round to {e1, e2, e3}, then we remove one element with uniform
probability. We now want to prove this CR scheme is c-balanced for some c. The goal is thus to
find a scalar c 2 [0, 1] such that P[e 2 ⇡(R(x)) | e 2 R(x)] � c for any e 2 supp(x). It turns out
that c = 2/3 works in this case.

Proposition 1.1. Algorithm 1.1 is a 2/3-balanced CR scheme for the graphic matroid polytope of
K3.
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0.8

0.7

x

0.5

e3

e2

R(x)

e1

e3

e2

⇡(R(x))

e1
x 7! R(x) ⇡

(a) One run of Algorithm 1.1 on the graph K3.

x1

x2

x3

x

x1

x2

x3

R(x)

x1

x2

x3

⇡(R(x))

x 7! R(x) ⇡

(b) One run of Algorithm 1.1 on PI .

Figure 2: Two di↵erent ways to visualize a run of the CR scheme described by Algorithm 1.1.

Proof. Instead of directly trying to compute P[e 2 ⇡(R(x)) | e 2 R(x)], we will work with the
complement P[e /2 ⇡(R(x)) | e 2 R(x)] and try to upper bound this quantity. This will be the
strategy used to prove the balancedness of every CR scheme in this thesis.
Suppose x1 > 0. We use the total probability law on the events

�
R(x) = E

 
and

�
R(x) 6= E

 
to

compute the desired probability:

P
⇥
e1 /2 ⇡(R(x) | e1 2 R(x)

⇤
= P

⇥
e1 /2 ⇡(R(x)), R(x) = E | e1 2 R(x)

⇤

+ P
⇥
e1 /2 ⇡(R(x)), R(x) 6= E | e1 2 R(x)

⇤

= P
⇥
e1 /2 ⇡(R(x)) | R(x) = E

⇤
P
⇥
R(x) = E | e1 2 R(x)

⇤

+ P[e1 /2 ⇡(R(x)) | R(x) 6= E, e1 2 R(x)] P
⇥
R(x) 6= E | e1 2 R(x)

⇤

= P
⇥
e1 /2 ⇡(R(x)) | R(x) = E

⇤
P
⇥
e2 2 R(x), e3 2 R(x)

⇤
=

1

3
x2x3.

By doing these exact same steps again, we get three exact probabilities.

• P
⇥
e1 /2 ⇡(R(x) | e1 2 R(x)

⇤
= 1

3 x2x3 for every x 2 PI with x1 > 0.

• P
⇥
e2 /2 ⇡(R(x) | e2 2 R(x)

⇤
= 1

3 x1x3 for every x 2 PI with x2 > 0.

• P
⇥
e3 /2 ⇡(R(x) | e3 2 R(x)

⇤
= 1

3 x1x2 for every x 2 PI with x3 > 0.
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Since x1, x2, x3  1 by (1.6), we get that for every x 2 PI ,

P
⇥
e /2 ⇡(R(x) | e 2 R(x)

⇤
 1

3
8e 2 supp(x).

Our desired result therefore follows:

P
⇥
e 2 ⇡(R(x) | e 2 R(x)

⇤
� 1� 1

3
=

2

3
8e 2 supp(x).

A natural question is then the following. Can we find a CR scheme with a higher balancedness
than 2/3? If so, what is the best that we can do? The answer is that we can indeed do better, and
the best we can achieve is 23/27 ⇡ 0.85. Here is a CR scheme that achieves that.

Algorithm 1.2. For every x 2 PI ,

⇡x : 2E 7! I
⇡x(A) = A for any A 6= {e1, e2, e3}

⇡x({e1, e2, e3}) =

8
><

>:

{e1, e2} with probability x3/(x1 + x2 + x3)

{e1, e3} with probability x2/(x1 + x2 + x3)

{e2, e3} with probability x1/(x1 + x2 + x3)

Proposition 1.2. Algorithm 1.2 is a 23/27-balanced CR scheme for the graphic matroid polytope
of K3. Moreover, this balancedness is optimal, i.e. there does not exist a c-balanced CR scheme for
the graphic matroid polytope of K3 satisfying c > 23/27.

Notice that Algorithm 1.2 is not oblivious anymore, i.e. it does depend on the input point x 2 PI .
Proposition 1.2 will be a special case of the first result that we will present in this thesis. Indeed,
we will provide an optimal CR scheme for any matroid with pairwise disjoint circuits.

1.5 Known results and our contributions

In this thesis, we are interested in designing contention resolution schemes for di↵erent classes of
matroids. A CR scheme with a balancedness of 1�(1�1/n)n is provided for the uniform matroid of
rank 1 in [7] and [8]. Moreover, it is shown that this is optimal, which means that no c-balanced CR
scheme exists for the uniform matroid of rank 1 with c > 1�(1�1/n)n. A result proved in [5] shows
that there exists in fact a 1�(1�1/n)n-balanced CR scheme for any general matroid. This existence
proof can then be turned into an e�cient algorithm with a balancedness of 1 � 1/e ⇡ 0.63. It is
also argued in that same paper that this is (asymptotically) optimal, since 1� (1�1/n)n converges
to 1 � 1/e as n gets large and one cannot do better than 1 � (1 � 1/n)n for the uniform matroid
of rank one, as previously mentioned. However, this algorithm uses random sampling and lacks
simplicity, which is why another simpler CR scheme with a worse balancedness was also presented.

There has been work done in getting CR schemes for di↵erent types of independence families
(see [2], [11]), or by having the elements of the random set R(x) arrive in an online fashion (see [1],
[9], [14]).

However, to the best of our knowledge, not much work has been done in the direction of finding
subclasses of matroids where the 1� 1/e balancedness factor can be improved. This is the problem
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tackled in this thesis, where we consider three di↵erent types of matroids and provide simple CR
schemes achieving a strictly better balancedness factor than 1� 1/e. Moreover, we also show that
the achieved balancedness factors are optimal.

Our first result is an optimal monotone CR scheme for matroids with pairwise disjoint circuits.
The balancedness of this scheme is of 1� 1

g (1� 1
g )

g�1, where g is the girth, or length of a shortest

circuit of the matroid. Note that 1 � 1
g (1 � 1

g )
g�1 � 0.75 for any g � 2, which is already much

higher than 1� 1/e ⇡ 0.63.
The second and main result of this thesis is an optimal monotone CR scheme for the uniform

matroid of rank k on n elements, where the balancedness is of c(k, n) := 1�
�n
k

� �
1� k

n

�n+1�k � k
n

�k
.

This generalizes the previous result of 1 � (1 � 1/n)n for the rank one case by plugging in k = 1.
Moreover, for a fixed value of k, c(k, n)

n!1����! 1�e
�k

k
k
/k!, which also generalizes the asymptotical

1� 1/e balancedness for k = 1. Finally, even in that case, our scheme is in a sense simpler than the
one provided in [7] and [8], since our algorithm simply consists of assigning a probability to each
base contained in the input set and picking one base according to that probability distribution.

Finally, the above CR scheme for uniform matroids naturally generalizes to partition matroids.
If we denote by c(k, n) the optimal balancedness for the uniform matroid U

k
n , then the balancedness

we get for a partition matroid with blocks Di and capacities di is mini c(di, |Di|). Again, we also
prove that this is optimal.
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2 An optimal monotone contention resolution scheme for

matroids with pairwise disjoint circuits

2.1 The CR Scheme

We provide in this section an optimal monotone CR Scheme for any matroid with pairwise disjoint
circuits. We are given a point x 2 PI and a subset A ⇢ supp(x). The CR scheme checks one by
one whether each circuit is completely contained inside the set A. When a circuit is completely
included, the algorithm removes one element from it randomly, where the probability depends on
the input point x 2 PI . The framework is the following:

• N = {e1, .., en} is the ground set.

• M = (N, I) is a matroid with circuits {C1, ..., Ck} where Ci \ Cj = ; for every i 6= j 2
{1, ..., k}.

• PI = {x 2 RN
�0 | x(A)  r(A) 8A ⇢ N} =

�
x 2 [0, 1]N | x(Ci)  |Ci|� 1 8i 2 {1, ..., k}

 

is the corresponding matroid polytope.

We may assume without loss of generality that the matroid does not have loops, i.e. the girth of
M satisfies g � 2. Indeed, if an element e 2 N is a loop, it is a one element dependent set and
r({e}) = 0. It follows that any point x 2 PI satisfies xe = 0 and that the random set R(x) will
never contain the element {e} in the first place.

Algorithm 2.1 (CR scheme ⇡ for PI). We are given a point x 2 PI and a set A ⇢ supp(x).

• For each circuit Ci, check whether Ci is completely included in A, i.e. check whether
Ci ⇢ A for each i 2 {1, . . . , k}.

• If Ci ⇢ A, remove one element e 2 Ci randomly with probability x(e)/x(Ci).

Remark. We here use a standard notation that we have already used before, which is that for any
A ⇢ N, x(A) :=

P
e2A x(e).

Theorem 2.1. The CR scheme described in Algorithm 2.1 for a matroid with pairwise
disjoint circuits has a balancedness of

c = 1� 1

g

✓
1� 1

g

◆g�1

,

where g is the girth of the matroid M.

Remark. This balancedness is actually optimal. That is, no CR scheme can achieve a higher
balancedness for this type of matroids. We prove that in the next section.

Notice that c is always greater than (1� 1/e) ⇡ 0.63, which is the balancedness of the CR scheme
provided for an arbitrary matroid in [5]. The worst case here is 3/4 = 0.75, which corresponds to
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g 2 3 4 5 6 10
c 0.75 0.85 0.89 0.92 0.93 0.96

Table 1: Numerical values for the balancedness of the CR scheme described in Algorithm 2.1

g = 2. Indeed, the balancedness grows as g increases, since

x! 1� 1

x

✓
1� 1

x

◆x�1

is a strictly increasing function for x � 2. This is illustrated in Table 1.
Let us now move on to the proof of Theorem 2.1. We will first need the following lemma.

Lemma 2.1. Let M = (N, I) be a matroid and let x 2 PI . Let C be a circuit of the matroid with
x(C) > 0. Then:

Q
e2C x(e)

x(C)
 1

|C|

✓
1� 1

|C|

◆|C|�1

 1

g

✓
1� 1

g

◆g�1

where g is the girth of the matroid.

Proof of Lemma 2.1. The proof is a consequence of the arithmetic-geometric mean inequality and
of the constraint of the matroid polytope corresponding to the circuit C: x(C)  |C| � 1. We set
m := |C| for simplicity. As a reminder, the arithmetic-geometric mean inequality states:

Y

e2C

x(e) 
✓P

e2C x(e)

|C|

◆|C|

=
x(C)m

mm
.

Hence,

Q
e2C x(e)

x(C)
 x(C)m

mm x(C)
=

x(C)m�1

mmm�1
 (m� 1)m�1

mmm�1
=

1

m

✓
1� 1

m

◆m�1

 1

g

✓
1� 1

g

◆g�1

.

The first inequality follows from the arithmetic-geometric mean inequality, the second one from the
constraint x(C)  |C|� 1 of PI and the last one from the fact that g  m.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Since the circuits are by definition the minimal (inclusion-wise) dependent
sets of the matroid, removing one element from them gives an independent set. Since the circuits
are all pairwise disjoint, the algorithm removes one element from each of the circuits completely
contained in A, hence returning an independent set which is a subset of A.

Let’s compute the balancedness of the scheme. We are given a point x 2 PI and a random set
R(x) ⇢ N where each element ei 2 N is included with probability x(ei) independently.

Let e 2 supp(x) and suppose R(x) contains e. If e does not lie in any circuit of the matroid M,
then Algorithm 2.1 will always keep that element. Hence:

P
⇥
e 2 ⇡x(R(x)) | e 2 R(x)

⇤
= 1.
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We can thus suppose that there exists a unique i 2 {1, ..., k} such that e 2 Ci.
If Ci 6⇢ supp(x), then Ci will never be completely included in R(x) and Algorithm 2.1 will thus
always keep the element e. Our desired probability is equal to one again:

P
⇥
e 2 ⇡x(R(x)) | e 2 R(x)

⇤
= 1.

Hence, we can assume that Ci ⇢ supp(x). We condition on the event {Ci ⇢ R(x)} to compute the
desired probability.

P
⇥
e /2 ⇡x(R(x)) | e 2 R(x)

⇤
= P

⇥
e /2 ⇡x(R(x)) | e 2 R(x), Ci ⇢ R(x)

⇤
P
⇥
Ci ⇢ R(x) | e 2 R(x)

⇤

+ P
⇥
e /2 ⇡x(R(x)) | e 2 R(x), Ci 6⇢ R(x)

⇤
P
⇥
Ci 6⇢ R(x) | e 2 R(x)

⇤

= P
⇥
e /2 ⇡x(R(x)) | Ci ⇢ R(x)

⇤
P
⇥
Ci ⇢ R(x) | e 2 R(x)

⇤

= x(e)/x(Ci)
Y

f2Ci\e

x(f)

=

 
Y

e2Ci

x(e)

!.
x(Ci)

 1

g

✓
1� 1

g

◆g�1

,

where the inequality follows from Lemma 2.1. We therefore get the desired result by taking the
complement:

P
⇥
e 2 ⇡x(R(x)) | e 2 R(x)

⇤
� 1� 1

g

✓
1� 1

g

◆g�1

.

2.2 Optimality

We provide in this section a hardness result about the balancedness of a contention resolution
schemes for any matroid. The bound that we find takes into account the girth g of the matroid,
i.e. the circuit of shortest length. In particular, we show that the balancedness of any CR scheme
for any matroid cannot be higher than 1� 1/g (1� 1/g)g�1. This also shows us that Algorithm 2.1
is an optimal CR scheme for matroids with pairwise disjoint circuits.

Theorem 2.2. Let M = (N, I) be a matroid with girth g. There does not exist a c-balanced

CR scheme for M with c > 1� 1
g

⇣
1� 1

g

⌘g�1
.

The proof for Theorem 2.2 generalizes the idea of the proof of a similar statement for uniform
matroids of rank one given in [5].

Proof. We let N = {e1, . . . , en} be our ground set and C a shortest circuit of the matroid. Without
loss of generality, we may reorder the elements of the ground set so that C = {e1, . . . , ek} where
we denote by k the cardinality, or length of that circuit. Hence k = g, where g is the girth of the
matroid.
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We fix the following point in the matroid polytope:

x(e) =

(
(k � 1)/k if e 2 C.

0 if e /2 C.
(2.1)

Notice that x 2 PI = {x 2 RN
�0 | x(A)  r(A) 8A ⇢ N}. Indeed, for any A ( C,

x(A) =
k � 1

k
|A| < |A| = r(A),

since any strict subset of a circuit is independent. Moreover,

x(C) = k � 1 = r(C).

Since the values of x are zero everywhere outside the circuit C, it is clear that all the other constraints
of the matroid polytope are satisfied as well.

Let ⇡ be any c-balanced CR scheme for M, and let R(x) ⇢ N be a random set satisfying
P[e 2 R(x)] = x(e) for every e 2 N independently. We denote by I := ⇡x(R(x)) the independent
set returned by this CR scheme. Notice that since I is always a subset of R(x), we get that

E [|I|]  E [r(R(x))] . (2.2)

Moreover, due to our choice of the point x in (2.1) and the definition of a c-balanced CR scheme,

E [|I|] = E
"
X

e2N

1{e2I}

#
=
X

e2N

P[e 2 I] �
X

e2N

c x(e) =
X

e2C

c x(e) = (k � 1)c. (2.3)

We thus get the following upper bound for the balancedness factor by combining (2.2) and (2.3):

c 
E
⇥
r(R(x))

⇤

k � 1
. (2.4)

Let’s now compute the expected rank by using the following facts:

• Since supp(x) = C, we get that r(R(x)) can only take values in {0, . . . , k � 1}.

• P[r(R(x)) = i] = P[|R(x)| = i] =
�k
i

� �
k�1
k

�i � 1
k

�k�i
for any i 2 {0, . . . , k � 2}.

• P[r(R(x)) = k � 1] = P[|R(x)| = k � 1] + P[|R(x)| = k] =
� k
k�1

� �
k�1
k

�k�1 � 1
k

�
+
�
k�1
k

�k
.
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Then,

E
⇥
r(R(x))

⇤
=

k�1X

i=0

i P[r(R(x)) = i]

=
k�1X

i=1

i

✓
k

i

◆ ✓
k � 1

k

◆i ✓1

k

◆k�i

+ (k � 1)

✓
k � 1

k

◆k

=
1

kk

k�1X

i=1

i

✓
k

i

◆
(k � 1)i +

(k � 1)k+1

kk

=
1

kk

⇣
(k � 1)kk � k(k � 1)k)

⌘
+

(k � 1)k+1

kk

= k � 1� k(k � 1)k

kk
+

(k � 1)k+1

kk

= (k � 1)

✓
1� k(k � 1)k�1

kk
+

(k � 1)k

kk

◆

= (k � 1)

 
1� 1

k

✓
k � 1

k

◆k�1
!

= (k � 1)

 
1� 1

k

✓
1� 1

k

◆k�1
!

(2.5)

where we have used the equality
Pk�1

i=1 i
�k
i

�
(k � 1)i = (k � 1)kk � k(k � 1)k from the third to the

fourth line. This is an easy consequence of the binomial formula by taking the derivative on both
sides.

By plugging the above into (2.4) and remembering that k = g, where g is the girth of the
matroid M = (N, I), we finally get:

c  1� 1

g

⇣
1� 1

g

⌘g�1
.

2.3 Monotonicity

We prove in this subsection that the CR scheme provided in Algorithm 2.1 is monotone.

Theorem 2.3. Algorithm 2.1 is a monotone CR scheme for any matroid M with disjoint circuits,
i.e. for any x 2 PI and any e 2 A ⇢ B ⇢ supp(x),

P[e 2 ⇡x(A)] � P[e 2 ⇡x(B)].

Proof. Let x 2 PI . If e does not lie in any circuit of the matroid, then ⇡x will always keep that
element (c.f. Algorithm 2.1). This means that P[e 2 ⇡x(A)] = 1 and the theorem trivially holds.
We thus suppose that e is contained in a unique circuit Ci for some i 2 {1, . . . , k}. If Ci is not
completely contained in A, then again Algorithm 2.1 will always keep the element e, and therefore
P[e 2 ⇡x(A)] = 1. Finally, if e 2 Ci ⇢ A, we also have that Ci ⇢ B, which means that
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Figure 3: An example of a cactus graph

P[e 2 ⇡x(A)] = P[e 2 ⇡x(B)] = 1� x(e)

x(Ci)
,

and the theorem holds in that case as well.

2.4 Applications to graphic matroids

A direct and straightforward application of Theorem 2.1 is to the graphic matroid of graphs with
pairwise disjoint cycles (where by disjoint we mean the edge sets of those cycles). Equivalently,
these are graphs where each edge lies in at most one cycle. It turns out that such a definition
already exists for connected graphs.

Definition 2.1. A connected graph G is a cactus graph if each edge of G lies in at most one cycle.
Equivalently, the cycles of the connected graph have disjoint edge sets.

Remark. The name cactus graph was originally introduced in [10]. They were previously also named
Husimi trees in [12].

Therefore, the graphs G for which we can apply Algorithm 2.1 / Theorem 2.1 are disjoint union of
cacti.

Corollary (Corollary of Theorem 2.1). Let G be a disjoint union of cacti. Then Algorithm 2.1 is
a c-balanced CR scheme for the graphic matroid polytope of G with

c = 1� 1

g

✓
1� 1

g

◆g�1

,

where g is the girth of G.

It turns out that there is a broad class of graphs which satisfy that property. Indeed, any simple
graph without even cycles is a disjoint union of cacti.

Proposition 2.1 ([18]). Let G = (V,E) be a simple graph without even cycles. Then each edge
lies in at most one cycle.

We provide a detailed proof which was first found in the online reference [18].
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Proof. Suppose for contradiction that there exists an edge e 2 E that is contained in two distinct
cycles C1 and C2. We split the proof into two cases.

Case 1: Suppose C1 and C2 intersect in one common path. Denote the common path of C1 and
C2 by P and its endpoints by u and v.

• If P has even length, then the path C1\P from v to u must have odd length, since C1 has odd
length. Likewise, the path C2\P from v to u must have odd length. We can then construct
a new cycle C3 := (C1\P ) [ (C2\P ) of even length, which is a contradiction.

• If P has odd length, then the path C1\P from v to u must have even length, since C1 has odd
length. Likewise, the path C2\P from v to u must have even length. We can then construct
a new cycle C3 := (C1\P ) [ (C2\P ) of even length, which is a contradiction.

e

u

v

C1

C2

P e

u

v
C3

Figure 4: Illustration of the first case of the proof of Theorem 2.1

Case 2: Suppose C1 and C2 intersect in at least two disjoint common paths. Let P1 and P2 be
two disjoint consecutive common paths of C1 \ C2. Let a be the last vertex of P1 and let b the
first vertex of P2. We construct a new cycle C3 the following way: we follow the cycle C1 from a

to b (we call this path Q1), and then follow C2 from b to a (we call this path Q2). Then, since
C3 must have odd length by assumption, Q1 ⇢ C1 and Q2 ⇢ C2 must have di↵erent parities. But
then C1 � Q1 + Q2 (we modify C1 by replacing Q1 by Q2) is a cycle of even length, which is a
contradiction.

C1

C2

P2

b

a

P1

b

a

Q2

Q1 b

a

C1 �Q1 +Q2

Figure 5: Illustration of the second case of the proof of Theorem 2.1

This allows us to have another corollary of Theorem 2.1.
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Corollary (Corollary of Theorem 2.1). Let G be a simple graph without even cycles. Then there
exists a c-balanced CR scheme for the graphic matroid polytope of G satisfying c � 23/27 ⇡ 0.85.

Proof. By Theorem 2.1, G is a disjoint union of cacti. By the previous corollary, Algorithm 2.1 is
a c-balanced CR scheme for the graphic matroid of that graph with

c = 1� 1

g

✓
1� 1

g

◆g�1

.

Since G is a simple graph, it cannot have any parallel edges, which means that g � 3. In particular,

c � 1� 1

3

✓
1� 1

3

◆3�1

= 23/27.

20



A ⇢ supp(x)

(a) The input set A ⇢ supp(x). The cycles that need to be broken by Algorithm 2.1 are shaded in blue.

⇡x(A) 2 I

(b) The output of Algorithm 2.1, which is independent (acyclic) set ⇡x(A) 2 I
.

Figure 6: An example run of Algorithm 2.1 applied to the graphic matroid of a cactus graph.
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3 An optimal monotone contention resolution scheme for

uniform matroids

We consider in this section the problem of designing an optimal CR scheme for any uniform matroid.
To the best of our knowledge, this was only done so far for the uniform matroid of rank one (that
we denote by U

1
n) in [7] and [8]. For a ground set of size n, a CR scheme with a balancedness of

1 � (1 � 1/n)n was given and it was shown in [5] that this was optimal, i.e. no c-balanced CR
scheme for the uniform matroid of rank one can satisfy c > 1� (1� 1/n)n.

Our contribution is an optimal CR scheme for the uniform matroid of rank k on n elements

(that we denote by U
k
n) which has a balancedness factor of c(k, n) := 1�

�n
k

� �
1� k

n

�n+1�k � k
n

�k
.

It is clear that this generalizes the previous result for the uniform matroid of rank 1 by setting
k = 1. Moreover, as mentioned before, this factor is optimal, thus no c-balanced CR scheme for Uk

n

can satisfy c > 1�
�n
k

� �
1� k

n

�n+1�k � k
n

�k
. For a fixed k, this satisfies c(k, n)

n!1����! 1� e
�k

k
k
/k!,

which also generalizes the (1� 1/e) asymptotically optimal balancedness for the rank one case. In
addition, even when considering the case k = 1, our CR scheme is in a sense simpler than the one
presented in [7] and [8], even though both CR schemes are (1� (1� 1/n)n) -balanced, since we are
in that case simply assigning a probability to each element of the input set and picking an element
according to that probability distribution.

3.1 The CR scheme for Uk
n

Let us describe the framework for the uniform matroid U
k
n = (N, I). We assume throughout this

whole section that n � 2 and that k 2 {1, . . . , n� 1}.

• N = {1, . . . , n} is the ground set.

• I = {A ⇢ N | |A|  k} are the independent sets.

• PI = {x 2 RN
�0 | x(A)  r(A) 8A ⇢ N} = {x 2 [0, 1]N | x1 + · · · + xn  k} is the matroid

polytope.

Let’s now describe the CR scheme. For any point x 2 PI , we let R(x) be the random set
satisfying P[i 2 R(x)] = xi independently for each coordinate. If the size of R(x) is at most k, then
R(x) is already an independent set and the CR scheme returns that. If however |R(x)| > k, then
the CR scheme returns a random subset of k elements by making the probabilities of each subset
of k elements depend linearly on the x-coordinates of the original point x 2 PI .

Let us define what these probabilities are. We first fix an arbitrary x 2 PI . For any set
A ⇢ supp(x) with |A| > k and any subset B ⇢ A of size k, we define:

qA(B) :=
1⇣ |A|
|B|

⌘
⇣
1 + x̄(A \B)� x̄(B)

⌘
(3.1)

where we use the following convenient notation:

x̄(A) :=
1

|A|x(A) =
1

|A|
X

i2A

xi.
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1 2 3

4 5 6

7 8 9

A

1 2 3

4 5 6

7 8 9

⇡x(A)

⇡x

Figure 7: An example run of Algorithm 3.1 with n = 9 and k = 4

We are now ready to define the following randomized CR scheme ⇡ for Uk
n .

Algorithm 3.1 (CR scheme ⇡ for Uk
n). We are given a point x 2 PI and a set A ⇢ supp(x).

• If |A|  k, then ⇡x(A) = A

• If |A| > k, then for every B ⇢ A with |B| = k,⇡x(A) = B with probability qA(B).

Let us first prove that this CR scheme is well-defined, i.e. qA is a valid probability distribution.

Lemma 3.1. The above procedure ⇡ is a well-defined CR scheme, i.e. 8x 2 PI , A ⇢ supp(x)

qA(B) � 0,
X

B⇢A,|B|=k

qA(B) = 1.

Proof. Since x̄(A \B) 2 [0, 1] and x̄(B) 2 [0, 1], it directly follows from the definition (3.1) that

qA(B) � 0.

In order to prove the second claim, we will need the equality

X

B⇢A,|B|=k

x(B) =

✓
|A|� 1

k � 1

◆
x(A) (3.2)

that we derive the following way:

X

B⇢A,|B|=k

x(B) =
X

B⇢A,|B|=k

X

i2A

xi1{i2B} =
X

i2A

xi

X

B⇢A,|B|=k

1{i2B}

=
X

i2A

xi |{B ⇢ A | |B| = k, i 2 B}| =
✓
|A|� 1

k � 1

◆
x(A).

23



Hence,

X

B⇢A,|B|=k

qA(B) =
X

B⇢A,|B|=k

1⇣ |A|
k

⌘
✓
1 +

x(A \B)

|A|� k
� x(B)

k

◆

= 1 +
1⇣ |A|
k

⌘
X

B⇢A,|B|=k

✓
x(A)

|A|� k
� x(B)

|A|� k
� x(B)

k

◆

= 1 +
1⇣ |A|
k

⌘
X

B⇢A,|B|=k

✓
x(A)

|A|� k
� |A| x(B)

k (|A|� k)

◆

= 1 +
1⇣ |A|

k

⌘ ⇣
|A|� k

⌘
X

B⇢A,|B|=k

✓
x(A)� |A|

k
x(B)

◆

= 1 +
1⇣ |A|

k

⌘ ⇣
|A|� k

⌘
⇣⇣ |A|

k

⌘
x(A)�

⇣ |A|
k

⌘
x(A)

⌘
= 1

Here is the main theorem of this section.

Theorem 3.1. Algorithm 3.1 is a c-balanced CR scheme for the uniform matroid of rank
k on n elements (denoted by U

k
n), where:

c = 1�
✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

.

Since we use the expression on the right hand side of the previous equation very often throughout
this section, we denote it by:

c(k, n) := 1�
✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

. (3.3)

A few important remarks:

• for k = 1, we get c(k, n) = 1� (1� 1/n)n, which indeed reproduces the optimal balancedness
for U1

n provided in [7] and [8]. This converges to 1� 1/e ⇡ 0.63 when n gets large.

• for k = n � 1, we get c(k, n) = 1 � 1
n

�
1� 1

n

�n�1
. Notice that Un�1

n = MCn , where MCn is
the graphic matroid of the cycle graph. The result from Section 2: ”An optimal monotone
CR scheme for matroids with pairwise disjoint circuits” coincides with the one here. This
converges to 1 as n tends to infinity.

• An e�cient CR scheme for an arbitrary matroid was provided in [5] with a balancedness of
1� 1/e ⇡ 0.63. In our case, c(k, n) > 1� 1/e for any k and n. This is illustrated in Table 2.

Proposition 3.1. For a fixed k, the limit of c(k, n) as n tends to infinity is

lim
n!1

c(k, n) = 1� e
�k k

k

k!
.
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n \ k 1 2 3 4 9 99 999

2 0.75
3 0.704 0.852
4 0.684 0.813 0.895
5 0.672 0.793 0.862 0.918
10 0.651 0.759 0.813 0.850 0.961
100 0.633 0.732 0.779 0.810 0.874 0.996
1000 0.632 0.730 0.776 0.809 0.869 0.962 0.999

Table 2: Numerical values for the balancedness c(k, n) of Theorem 3.1

Proof. We will need Stirling’s approximation, which states that:

n! ⇠
p
2⇡n

⇣
n

e

⌘n
(3.4)

which means that these two quantities are asymptotic, i.e. their ratio tends to 1 if we tend n to
infinity. By (3.4), we get

n!

(n� k)!
⇠
p
2⇡n

⇣
n

e

⌘n 1p
2⇡(n� k)

✓
e

n� k

◆n�k

= e
�k n

n

(n� k)n�k

r
n

n� k
. (3.5)

Hence,

1� c(k, n) =

✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

=
k
k

k!

n!

(n� k)!

(n� k)n+1�k

nn+1

⇠ e
�k k

k

k!

n� k

n

r
n

n� k

= e
�k k

k

k!

r
n� k

n

⇠ e
�k k

k

k!
,

where we have used (3.5) from the second to the third line.

3.2 Outline of the proof of Theorem 3.1

We give in this subsection an outline of the proof of Theorem 3.1. Throughout this whole section
on uniform matroids, we fix an arbitrary e 2 N . In order to prove Theorem 3.1, we need to show
that for every x 2 PI with xe > 0:

P[e 2 ⇡x(R(x)) | e 2 R(x)] � c(k, n).
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This is equivalent to showing that for every x 2 PI with xe > 0:

P[e /2 ⇡x(R(x)) | e 2 R(x)]  1� c(k, n). (3.6)

We now fix a few key definitions/notations.

Notation 1. For any B ⇢ A ⇢ N ,

pA(B) := P[RA(x) = B] =
Y

i2B

xi

Y

i2A\B

(1� xi).

where RA(x) is the random set obtained by rounding each coordinate of x|A in the reduced ground
set A to one independently with probability xi.

Remark. Of course, pN (B) = P[R(x) = B]. We do not write the dependence on x 2 PI for
simplicity of notation.

Notation 2. We will mainly work on the set N \ {e}. For this reason, we define:

S := N \ {e}.

Of course, this means that |S| = n� 1, which is something that we will use very often. These two
notations allow us to rewrite the probability in (3.6) in a more convenient form. Indeed, for any
x 2 PI satisfying xe > 0,

P
h
e /2 ⇡x(R(x)) | e 2 R(x)

i
=
X

A⇢S

P[e /2 ⇡x(R(x)) | RS(x) = A, e 2 R(x)] P[RS(x) = A | e 2 R(x)]

=
X

A⇢S,|A|�k

P
h
e /2 ⇡x(R(x)) | R(x) = A [ e

i
pS(A)

=
X

A⇢S,|A|�k

pS(A)
X

B⇢A,|B|=k

qA[e(B).

The obtained expression is a multivariable function of the variables x1, . . . , xn, since pS(A) and
qA[e(B) depend on those variables as well. We give it the following notation.

Notation 3.

G(x) :=
X

A⇢S,|A|�k

pS(A)
X

B⇢A,|B|=k

qA[e(B). (3.7)

It turns out that for proving Theorem 3.1, it is enough to show the following.

Theorem 3.2. Let G(x) and c(k, n) be as defined above. Then the following maximization
problem satisfies

max
x2PI

G(x) = 1� c(k, n)

and the maximum is attained at the point

(x1, . . . , xn) = (k/n, . . . , k/n) 2 PI .

26



Proof that Theorem 3.2 implies Theorem 3.1. Indeed, Theorem 3.2 implies that for every x 2 PI ,

G(x)  1� c(k, n)

with equality holding if x = (k/n, . . . , k/n). In particular, for any x 2 PI satisfying xe > 0, we get:

G(x) = P
h
e /2 ⇡x(R(x)) | e 2 R(x)

i
 1� c(k, n),

which is what we needed to prove Theorem 3.1 by (3.6).

Notice that for the conditional probability to be well defined, we need the assumption that
xe > 0. However, in our case, G(x) is simply a multivariable function of the n variables x1, . . . , xn

and is thus also defined when xe = 0. We may therefore forget the conditional probability and
simply treat Theorem 3.2 as a multivariable maximization problem over a bounded domain. We
now state the outline of the proof.

1. We first maximize G(x) over the variable xe. We then get an expression depending only on
the x-variables in S. This is done in Section 3.3.

2. We then maximize the expression obtained in the first part over the unit hypercube [0, 1]S .
This is done in Section 3.4.

3. Finally, we will combine the first two parts to show that the maximum in Theorem 3.2 is
attained at the point xi = k/n for every i 2 N . This is done in Section 3.5.

3.3 Maximizing over the variable xe

The matroid polytope of Uk
n is

PI = {x 2 [0, 1]N | x(N)  k}.

We define a new polytope by removing the constraint xe  1 from PI :

ePI := {x 2 RN
�0 | x(N)  k and xi  1 8i 2 S}. (3.8)

Clearly, PI ⇢ ePI . Here is the main result of this subsection.

Lemma 3.2. For every x 2 ePI ,

G(x) 
X

A⇢S,|A|=k

pS(A)
⇣
1� x̄(A)

⌘
. (3.9)

Moreover, equality holds when xe = k � x(S).

Remark. In other words, we consider the maximization problem max{G(x) | x 2 ePI} and maximize
G(x) over the variable xe while keeping all the other variables (xi for every i 2 S) fixed to get an
expression depending only on the x-variables in S.
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Proof.

G(x) =
X

A⇢S,|A|�k

pS(A)
X

B⇢A,|B|=k

qA[e(B)

=
X

A⇢S,|A|�k

pS(A)
X

B⇢A,|B|=k

1⇣ |A|+ 1

k

⌘
⇣
1 + x̄

⇣
(A \B) [ e)

⌘
� x̄(B)

⌘

=
X

A⇢S,|A|�k

pS(A)
1⇣ |A|+ 1

k

⌘
X

B⇢A,|B|=k

✓
1 +

x(A \B) + xe

|A|� k + 1
� x(B)

k

◆
. (3.10)

We now maximize this expression with respect to the variable xe over ePI while keeping all the
other variables fixed. Since this is a linear function of xe and the coe�cient of xe is positive, the
maximal value will be xe = k � x(S) in order to satisfy the constraint x(N)  k. Note that this
was the reason for the definition of ePI , since k� x(S) might not necessarily be smaller than 1. We
thus plug-in xe = k�x(S) in (3.10) and write an inequality to emphasize that the derivation holds
for any x 2 ePI .

(3.10) 
X

A⇢S,|A|�k

pS(A)
1⇣ |A|+ 1

k

⌘
X

B⇢A,|B|=k

✓
1 +

x(A \B) + k � x(S)

|A|� k + 1
� x(B)

k

◆

=
X

A⇢S,|A|�k

pS(A)
1⇣ |A|+ 1

k

⌘
X

B⇢A,|B|=k

✓
1 +

k � x(S \A)� x(B)

|A|� k + 1
� x(B)

k

◆

=
X

A⇢S,|A|�k

pS(A)
1⇣ |A|+ 1

k

⌘
X

B⇢A,|B|=k

✓
1 +

k

|A|� k + 1
� x(S \A)

|A|� k + 1
�
✓

1

|A|� k + 1
+

1

k

◆
x(B)

◆

=
X

A⇢S,|A|�k

pS(A)
1⇣ |A|+ 1

k

⌘
X

B⇢A,|B|=k

✓
|A|+ 1

|A|� k + 1
� x(S \A)

|A|� k + 1
� |A|+ 1

k(|A|� k + 1)
x(B)

◆
.

(3.11)

Notice the only part which depends on B in the last summation is x(B). By using Equation (3.2)

and noticing that
P

B⇢A,|B|=k 1 =
⇣ |A|

k

⌘
, we get

(3.11) =
X

A⇢S,|A|�k

pS(A)
1⇣ |A|+ 1

k

⌘ 1

|A|� k + 1

✓⇣ |A|
k

⌘
(|A|+ 1)�

⇣ |A|
k

⌘
x(S \A)� |A|+ 1

k

⇣ |A|� 1

k � 1

⌘
x(A)

◆

=
X

A⇢S,|A|�k

pS(A)
1⇣ |A|+ 1

k

⌘ 1

|A|� k + 1

⇣ |A|
k

⌘✓
|A|+ 1� x(S \A)� |A|+ 1

|A| x(A)

◆

=
X

A⇢S,|A|�k

pS(A)
|A|� k + 1

|A|+ 1

1

|A|� k + 1

✓
|A|+ 1� x(S \A)� |A|+ 1

|A| x(A)

◆

=
X

A⇢S,|A|�k

pS(A)

|A|+ 1

✓
|A|+ 1� x(S \A)� |A|+ 1

|A| x(A)

◆

=
X

A⇢S,|A|�k

pS(A)

✓
1� x(S \A)

|A|+ 1
� x(A)

|A|

◆
. (3.12)
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Now, note that by definition of the term pS(A), we have

xi pS(A) = (1� xi) pS(A [ i) for any i 2 S \A. (3.13)

We compute the middle term in (3.12) by plugging in (3.13) and the change of variable B := A[ i.

X

A⇢S,|A|�k

1

|A|+ 1
pS(A) x(S \A) =

X

A⇢S,|A|�k

X

i2S

1

|A|+ 1
xi pS(A) 1{i/2A}

=
X

i2S

X

A⇢S,|A|�k

1

|A|+ 1
(1� xi) pS(A [ i) 1{i/2A}

=
X

i2S

X

B⇢S,|B|�k+1

1

|B| (1� xi) pS(B) 1{i2B}

=
X

B⇢S,|B|�k+1

1

|B| pS(B)
X

i2S

1{i2B} �
X

B⇢S,|B|�k+1

1

|B| pS(B)
X

i2S

xi1{i2B}

=
X

B⇢S,|B|�k+1

pS(B)�
X

B⇢S,|B|�k+1

pS(B)

|B| x(B)

=
X

B⇢S,|B|�k+1

pS(B)

✓
1� x(B)

|B|

◆

=
X

A⇢S,|A|�k+1

pS(A)

✓
1� x(A)

|A|

◆
. (3.14)

We finally plug-in (3.14) into (3.12) and use
P

A⇢S,|A|�k =
P

A⇢S,|A|�k+1 +
P

A⇢S,|A|=k to get

(3.12) =
X

A⇢S,|A|=k

pS(A)

✓
1� x(A)

|A|

◆
=

X

A⇢S,|A|=k

pS(A)
⇣
1� x̄(A)

⌘
.

Notice that the only place where we used an inequality was from (3.10) to (3.11). Hence equality
holds when xe = k � x(S).

3.4 Maximizing hk
S : [0, 1]S 7! R

We now turn our attention in this section into maximizing the right-hand side expression in Lemma
3.2 over the unit hypercube [0, 1]S :

X

A⇢S
|A|=k

pS(A)(1� x̄(A)). (3.15)

It turns out it is more convenient to work with the following function.

h
k
S(x) :=

X

A⇢S
|A|=k

pS(A)(k � x(A)). (3.16)
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Expression (3.16) is simply expression (3.15) multiplied by k. Hence, maximizing one or the other
is equivalent: the optimal solution will be the same, whereas the optimal function value will be
multiplied by a factor of k.

Let us give a few reminders to make this subsection self-complete.

• We assume that n � 2 and k 2 {1, . . . , n� 1}.

• S := N \{e} is the set we obtain by removing the fixed element e 2 N from the original ground
set N = {1, . . . , n}. We may without loss of generality assume here that S = {1, . . . , n� 1}.

• pS(A) :=
Q

i2A xi
Q

i2S\A(1 � xi) for every A ⇢ S. This quantity implicitly depends on the

point x 2 [0, 1]S .

• c(k, n) := 1 �
�n
k

� �
1� k

n

�n+1�k � k
n

�k
is the balancedness we are trying to show for the CR

scheme described in Algorithm 3.1.

Theorem 3.3. Let n � 2 and k 2 {1, . . . , n� 1}. In particular, |S| = n� 1 � 1. Then,

h
k
S(x) =

X

A⇢S
|A|=k

pS(A)(k � x(A)) (3.17)

attains its maximum over the unit hypercube [0, 1]S at the point (k/n, . . . , k/n) with value

h
k
S

⇣
k/n, . . . , k/n

⌘
= k

✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

= k

⇣
1� c(k, n)

⌘
. (3.18)

For simplicity, we denote this maximum by:

↵(k, n) := k

✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

. (3.19)

Notice that h
0
S(x) = h

n
S(x) = 0 for any x 2 [0, 1]S . The theorem thus holds for k = 0 and

k = n as well. Moreover, the function h
k
S(x) also satisfies an interesting duality property: hk

S(x) =
h
n�k
S (1� x).
Let us state the outline of the proof of Theorem 3.3.

1. We first prove a proposition stating that this function has a unique local maximum in the
interior of [0, 1]S at the point (k/n, . . . , k/n).

2. We then show by induction on n that any point in the boundary of [0, 1]S has a lower function
value than h

k
S(k/n, . . . , k/n).

Proposition 3.2. For any k 2 {1, . . . , n� 1}, hk
S(x) has a unique extremum in the interior of the

unit hypercube [0, 1]S at the point (k/n, . . . , k/n). Moreover, that point is a local maximum.

We need the following lemma in order to prove Proposition 3.2.
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(a) S = {1, 2}, k = 1 (b) S = {1, 2}, k = 2

Figure 8: Plot of hk
S(x) for S = {1, 2}. The maximum is attained at x1 = x2 = 1/3 in (a) and at

x1 = x2 = 2/3 in (b).

Lemma 3.3. The following holds for any x 2 [0, 1]S:

h
k
S(x) =

k�1X

i=0

Q
i
S(x)

�
x(S)� i

�
(3.20)

where
Q

k
S(x) :=

X

A⇢S,|A|=k

pS(A). (3.21)

Remark. This formula actually holds for hk
A for any A ⇢ N and we will use it again in Section 3.6

for A = N .

Proof of Lemma 3.3. Notice that for i 2 A, pS(A) (1� xi) = pS(A \ i) xi. Then

h
k
S(x) =

X

A⇢S
|A|=k

pS(A)
X

i2A

(1� xi) =
X

A⇢S
|A|=k

X

i2S

pS(A)(1� xi)1{i2A}

=
X

i2S

X

A⇢S
|A|=k

xi pS(A \ i) 1{i2A} =
X

i2S

X

B⇢S\i
|B|=k�1

xi pS(B)

=
X

i2S

xi

X

A⇢S\i
|A|=k�1

pS(A) =
X

i2S

xi

0

BB@
X

A⇢S
|A|=k�1

pS(A)�
X

A⇢S
|A|=k�1

pS(A)1{i2A}

1

CCA

= x(S)Qk�1
S (x)�

X

A⇢S
|A|=k�1

pS(A)x(A). (3.22)
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Notice that by definition of hk
S(x) we have

h
k�1
S (x) =

X

A⇢S
|A|=k�1

pS(A)(k � 1� x(A)) = (k � 1)
X

A⇢S
|A|=k�1

pS(A)�
X

A⇢S
|A|=k�1

pS(A)x(A)

= (k � 1)Qk�1
S (x)�

X

A⇢S
|A|=k�1

pS(A)x(A). (3.23)

Substracting (3.23) from (3.22) we get

h
k
S(x)� h

k�1
S (x) = Q

k�1
S (x)

⇣
x(S)� (k � 1)

⌘
. (3.24)

We can rewrite this recursive formula as

h
i+1
S (x)� h

i
S(x) = Q

i
S(x)

⇣
x(S)� i

⌘
. (3.25)

By summing both sides from 0 to k� 1 and noticing that h0
S(x) = 0, we get the desired result.

We are now able to prove Proposition 3.2.

Proof of Proposition 3.2. Let k 2 {1, . . . , n� 1}. To find the extrema of hk
S : [0, 1]S 7! R, we want

to solve rhk
S(x) = 0. We thus first need to find

@h
k
S(x)

@xi
for every i 2 S. (3.26)

Notice that:

• For a set A ⇢ S such that i 2 A,

@

@xi
pS(A)(k � x(A)) = (k � x(A))

Y

j2A\i

xj

Y

j2S\A

(1� xj)� pS(A)

= (k � x(A))
Y

j2A\i

xj

Y

j2S\A

(1� xj)� xi

Y

j2A\i

xj

Y

j2S\A

(1� xj)

= (k � x(A)) pS\i(A \ i)� xi pS\i(A \ i)

= pS\i(A \ i)
⇣
k � x(A \ i)� 2xi

⌘
.

(3.27)

• For a set A ⇢ S such that i /2 A,

@

@xi
pS(A)(k � x(A)) = �(k � x(A))

Y

j2A

xj

Y

j2(S\A)\i

(1� xj)

= �pS\i(A)
⇣
k � x(A)

⌘
.

(3.28)
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We are now able to compute (3.26):

@h
k
S(x)

@xi
=

@

@xi

X

A⇢S
|A|=k

pS(A)(k � x(A))

=
X

A⇢S
|A|=k
i2A

@

@xi
pS(A)(k � x(A)) +

X

A⇢S
|A|=k
i/2A

@

@xi
pS(A)(k � x(A))

=
X

A⇢S
|A|=k
i2A

pS\i(A \ i)
⇣
k � x(A \ i)� 2xi

⌘
�
X

A⇢S
|A|=k
i/2A

pS\i(A)
⇣
k � x(A)

⌘

=
X

B⇢S\i
|B|=k�1

pS\i(B)
⇣
k � x(B)� 2xi

⌘
�
X

A⇢S\i
|A|=k

pS\i(A)
⇣
k � x(A)

⌘

=
X

A⇢S\i
|A|=k�1

pS\i(A)
⇣
k � 1� x(A) + 1� 2xi

⌘
� h

k
S\i(x)

=
X

A⇢S\i
|A|=k�1

pS\i(A)
⇣
k � 1� x(A)

⌘
+ (1� 2xi)

X

A⇢S\i
|A|=k�1

pS\i(A)� h
k
S\i(x)

= (1� 2xi)Q
k�1
S\i (x)�

⇣
h
k
S\i(x)� h

k�1
S\i (x)

⌘

= (1� 2xi)Q
k�1
S\i (x)�Q

k�1
S\i (x)

⇣
x(S \ i)� (k � 1)

⌘

= Q
k�1
S\i (x)

⇣
k � x(S)� xi

⌘
(3.29)

where we use (3.25) (or equivalently Lemma 3.3) in the second to last line.
We now set

rhk
S(x) = 0.

By (3.29), this is equivalent to

Q
k�1
S\i (x)

⇣
k � x(S)� xi

⌘
= 0 8i 2 S. (3.30)

Notice that

Q
k�1
S\i (x) = 0 ()

X

A⇢S\i
|A|=k�1

pS\i(A) = 0 () pS\i(A) = 0 8A ⇢ S \ i, |A| = k � 1

()
Y

j2A

xj

Y

j2(S\i)\A

(1� xj) = 0 8A ⇢ S, |A| = k � 1.

We can see this implies that such a solution lies on the boundary of [0, 1]S , since there exists an
index j 2 S such that xj = 0 or xj = 1. Since we are focusing on extrema in the interior, we may
disregard that solution. Hence, by (3.30),

xi = k � x(S) 8i 2 S.
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By setting xi = t for every i 2 S, we get

t = k � (n� 1)t () t = k/n () xi = k/n 8i 2 S.

Therefore, hk
S(x) has a unique extremum in the interior of [0, 1]S at the point (k/n, . . . , k/n).

It is left to prove that this point is a local maximum. We do that by computing the Hessian
matrix H(x) and showing that H(k/n, . . . , k/n) is negative definite. Note that H(x) is a (n� 1)⇥
(n� 1) matrix defined by:

H(x)i,j =
@
2
h
k
S(x)

@xi@xj
.

By Lemma A.1 and Lemma A.2, which can be found in the Appendix, we are able to compute the
Hessian:

@
2
h
k
S

@x
2
i

(k/n, . . . , k/n) = �2
✓
n� 2

k � 1

◆✓
k

n

◆k�1✓
n� k

n

◆n�k�1

8i 2 S (3.31)

and
@
2
h
k
S

@xi@xj
(k/n, . . . , k/n) = �

✓
n� 2

k � 1

◆✓
k

n

◆k�1✓
n� k

n

◆n�k�1

for i 6= j (3.32)

Therefore,

H(k/n, . . . , k/n) = �c

0

BBB@

2 1 1 . . . 1
1 2 1 . . . 1
...

...
1 1 1 . . . 2

1

CCCA
=: �c A (3.33)

where

c :=

✓
n� 2

k � 1

◆✓
k

n

◆k�1✓
n� k

n

◆n�k�1

> 0.

Our goal is to show that H(k/n, . . . , k/n) 2 R(n�1)⇥(n�1) is negative-definite. Notice that �

is an eigenvalue of H(k/n, . . . , k/n) with corresponding eigenvector v 2 Rn�1 if and only if ��/c
is an eigenvalue of A with the same eigenvector v 2 Rn�1. It is thus enough to show that A is
positive-definite, i.e. all the eigenvalues of A are positive.

Notice that A = In�1+Jn�1, where In�1 and Jn�1 are respectively the identity matrix and the
all-ones matrix of size (n� 1)⇥ (n� 1). In particular, we may rewrite this as

A = In�1 + e e
T (3.34)

where e 2 Rn�1 is the all-ones vector.
Let µ be an eigenvalue of A with corresponding eigenvector v. Then

Av = µv () v + (eT v)e = µv

() (eT v)e = (µ� 1)v.
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• If µ = 1, the corresponding eigenspace is {v 2 Rn�1 | e
T
v = 0}. This eigenspace is a

hyperplane of dimension n � 2, which means that there exists n � 2 linearly independent
eigenvectors corresponding to the eigenvalue µ = 1.

• If µ 6= 1, then we see that e and v are collinear, which means that e is an eigenvector
corresponding to µ. We compute the value of µ:

Ae = µe () e+ (eT e)e = µe () e+ (n� 1)e = µe () µ = n.

Hence, the spectrum of A is equal to {1, n}, where the multiplicity of the eigenvalue 1 is n �
2, whereas the multiplicity of the eigenvalue n is 1. We have therefore just proven that A is
positive-definite, which, by (3.33), implies that H(k/n, . . . , k/n) is negative-definite and concludes
the proof.

We need one more lemma before being able to prove Theorem 3.3. Recall that

↵(k, n) = k

✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

.

Lemma 3.4. The following holds for any n � 2 and k 2 {1, . . . , n� 1}:

↵(k, n) > ↵(k � 1, n� 1) (3.35)

↵(k, n) > ↵(k, n� 1) (3.36)

Proof of Lemma 3.4. First, notice that the function g(x) :=
�
x�1
x

�x
is strictly increasing for x � 1.

Indeed, by using the strict inequality log(1 + x) < x for any x > 0, we see that the derivative of
log(g(x)) is strictly positive:

d

dx
log(g(x)) =

d

dx
x log

✓
x� 1

x

◆
= log

✓
x� 1

x

◆
+ x

x

x� 1

1

x2
= log

✓
x� 1

x

◆
+

1

x� 1

=
1

x� 1
� log

✓
x

x� 1

◆
=

1

x� 1
� log

✓
1 +

1

x� 1

◆
> 0.

We first prove (3.35). If k = 1, then ↵(k � 1, n� 1) = 0 and the statement clearly holds. We may
thus assume k > 1. Then,

↵(k, n)

↵(k � 1, n� 1)
=

k

k � 1

�n
k

�
�n�1
k�1

�
✓
n� k

n

◆n+1�k ✓
k

n

◆k ✓
n� 1

n� k

◆n+1�k ✓
n� 1

k � 1

◆k�1

=
k

k � 1

n

k

k
k (n� 1)n

nn+1(k � 1)k�1

=

✓
n� 1

n

◆n✓
k

k � 1

◆k

=
g(n)

g(k)
> 1.

We now prove (3.36). If k = n� 1, then ↵(k, n� 1) = 0 and the statement clearly holds. We may
thus assume k < n� 1. Then,
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↵(k, n)

↵(k, n� 1)
=

�n
k

�
�n�1

k

�
✓
n� k

n

◆n+1�k ✓
k

n

◆k ✓
n� 1

n� 1� k

◆n�k ✓
n� 1

k

◆k

=
n

n� k

(n� k)n+1�k (n� 1)n

nn+1 (n� 1� k)n�k

=

✓
n� 1

n

◆n✓
n� k

n� k � 1

◆n�k

=
g(n)

g(n� k)
> 1.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. We prove the statement by induction on n � 2. The base case corresponds
to n = 2 and k = 1. In this case, we get S = {1} and

h
k
S(x) = x1(1� x1).

It is easy to see that this is a parabola which attains its maximum at the point x1 = 1/2 over the
unit interval [0, 1]. Moreover the function value at that point is 1/4 = ↵(1, 2).

We now prove the induction step. Let n � 3 and k 2 {1, . . . , n � 1}, and assume by induction
hypothesis that the statement holds for any 2  n

0
< n and k 2 {1, 2, . . . , n0 � 1}.

By Proposition 3.2, hk
S(x) has a unique extremum (in particular a local maximum) in the interior

of [0, 1]S at the point (k/n, . . . , k/n). We first show that the function h
k
S(x) evaluated at that point

is indeed equal to ↵(k, n).

h
k
S(k/n, . . . , k/n) =

✓
n� 1

k

◆✓
k

n

◆k ✓
1� k

n

◆n�1�k ✓
k � k

k

n

◆

= k

✓
n� 1

k

◆✓
k

n

◆k ✓
1� k

n

◆n�k

= k
n� k

n

✓
n

k

◆✓
k

n

◆k ✓
1� k

n

◆n�k

= ↵(k, n).

(3.37)

The only thing left to prove is that any point on the boundary of [0, 1]S has a lower function
value than ↵(k, n). A point x 2 [0, 1]S lies on the boundary if there exists i 2 S such that xi = 0
or xi = 1.

• Suppose there exists i 2 S such that xi = 0. For any set A ⇢ S containing i, we get pS(A) = 0.
Hence:

h
k
S(x) =

X

A⇢S,|A|=k

pS(A)(k � x(A)) =
X

A⇢S\i,|A|=k

pS\i(A)(k � x(A)) = h
k
S\i(x).

If k = n� 1, then h
k
S\i(x) = 0. We then clearly get hk

S(x) = h
k
S\i(x) = 0 < ↵(k, n).

If k < n� 1, then by induction hypothesis and Lemma 3.4,

h
k
S(x) = h

k
S\i(x)  ↵(k, n� 1) < ↵(k, n).
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• Suppose there exists i 2 S such that xi = 1. For any set A ⇢ S not containing i, we get
pS(A) = 0. Hence:

h
k
S(x) =

X

A⇢S,|A|=k

pS(A)(k � x(A)) =
X

A⇢S
|A|=k
i2A

pS(A)(k � x(A))

=
X

A⇢S
|A|=k
i2A

pS\i(A \ i)(k � 1� x(A \ i)) =
X

A⇢S\i
|A|=k�1

pS\i(A)(k � 1� x(A))

= h
k�1
S\i (x).

If k = 1, then h
k�1
S\i (x) = 0. We then clearly get hk

S(x) = h
k�1
S\i (x) = 0 < ↵(k, n).

If k > 1, then by induction hypothesis and Lemma 3.4,

h
k
S(x) = h

k�1
S\i (x)  ↵(k � 1, n� 1) < ↵(k, n).

3.5 Proof of Theorem 3.1

We now have all the pieces in order to prove Theorem 3.2 and, therefore, Theorem 3.1. Indeed, the
two main building blocks for this proof are Lemma 3.2 and Theorem 3.3. Let us restate the main
theorems for convenience.

Theorem (Theorem 3.1). Algorithm 3.1 is a c-balanced CR scheme for the uniform matroid
of rank k on n elements (denoted by U

k
n), where:

c = 1�
✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

=: c(k, n). (3.38)

We have already argued in Section 3.2 that proving Theorem 3.2 would imply Theorem 3.1.

Theorem (Theorem 3.2). The following maximization problem satisfies

max
x2PI

G(x) =

✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

= 1� c(k, n) (3.39)

and the maximum is attained at the point

(x1, . . . , xn) = (k/n, . . . , k/n) 2 PI .

Proof of Theorem 3.2. By Lemma 3.2, we get that for any x 2 PI (since PI ⇢ ePI),

G(x) 
X

A⇢S
|A|=k

pS(A)(1� x̄(A)). (3.40)
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Moreover, for every x 2 PI satisfying xe = k � x(S), equality holds in (3.40).
By Theorem 3.3, we get that for any x 2 PI ,

X

A⇢S
|A|=k

pS(A)(1� x̄(A))  1� c(k, n). (3.41)

Equality holds in (3.41) if xi = k/n for every i 2 S. This holds because the above expression does
not depend on xe, and the projection of the polytope PI to the S coordinates is included in the
unit hypercube [0, 1]S .

Therefore, by combining (3.40) and (3.41), we get that for every x 2 PI :

G(x)  1� c(k, n).

Moreover, for the point xi = k/n for every i 2 N , equality holds:

G(k/n, . . . , k/n) = 1� c(k, n).

Indeed, (3.40) holds with equality because xe = k�x(S) is satisfied (since k�x(S) = k�(n�1)k/n =
k/n) and (3.41) also holds with equality because xi = k/n for every i 2 S.

3.6 Optimality

We prove in this section that Algorithm 3.1 is actually optimal for Uk
n .

Theorem 3.4. There does not exist a c-balanced CR scheme for the uniform matroid of
rank k on n elements (denoted by U

k
n) satisfying:

c > 1�
✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

.

The proof uses a similar argument to the one used for U
1
n in [5]. It relies on computing the value

E
⇥
r(R(x)

⇤
, i.e. the expected rank of the random set R(x). However, for general values of k > 1,

the argument becomes more involved than the one presented in [5] for U
1
n. The proof we present

surprisingly uses Lemma 3.3.

Corollary (of Lemma 3.3). Let x 2 PI be the point xi = k/n 8i 2 N . Then,

h
k
N (x) =

k�1X

i=0

Q
i
N (x)(k � i). (3.42)

Proof of Theorem 3.4. We let ⇡ be an arbitrary c-balanced CR scheme for Uk
n , and we fix the point

xi =
k

n
for every i 2 N.

Clearly, x 2 PI = {x 2 [0, 1]N | x1 + · · · + xn  k}. We let R(x) be the random set satisfying
P[i 2 R(x)] = xi for each i independently, and denote by I := ⇡x(R(x)) the set returned by the CR
scheme ⇡. By definition of a CR scheme,

E[|I|]  E
⇥
r(R(x))

⇤
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and

E[|I|] =
X

i2N

P[i 2 I] �
X

i2N

c xi =
nck

n
= ck.

We therefore get the following upper bound for c:

c 
E
⇥
r(R(x))

⇤

k
. (3.43)

Moreover, recall that

P[|R(x)| = i] =
X

A⇢N
|A|=i

pN (A) = Q
i
N (x). (3.44)

Using (3.42) and (3.44), we get

E[r(R(x))] =
kX

i=0

i P[r(R(x)) = i] =
k�1X

i=0

i P
⇥
|R(x)| = i

⇤
+ k P

⇥
|R(x)| � k

⇤

=
k�1X

i=0

i P
⇥
|R(x)| = i

⇤
+ k

⇣
1� P

⇥
|R(x)|  k � 1

⇤⌘

= k +
k�1X

i=0

i P
⇥
|R(x)| = i

⇤
� k

k�1X

i=0

P
⇥
|R(x)| = i

⇤

= k �
k�1X

i=0

(k � i)Qi
N (x) by (3.44)

= k � h
k
N (x) by (3.42)

= k �
X

A⇢N,|A|=k

pN (A)(k � x(A))

= k �
X

A⇢N,|A|=k

✓
k

n

◆k ✓
1� k

n

◆n�k ✓
k � k

k

n

◆

= k

 
1�

✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k
!
.

Plugging the obtained formula into (3.43) leads to the desired result: an arbitrary c-balanced CR
scheme for Uk

n has to satisfy

c  1�
✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

.
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3.7 Monotonicity

We prove in this subsection that Algorithm 3.1 is a monotone CR scheme. As a reminder, this is
an important property for a CR scheme to have in order to be able to use it in an approximation
algorithm for the constrained submodular maximization problem.

Theorem 3.5. Algorithm 3.1 is a monotone CR scheme for U
k
n , i.e. for every x 2 PI and

e 2 A ⇢ B ⇢ supp(x),
P[e 2 ⇡x(A)] � P[e 2 ⇡x(B)].

We start by giving an explicit formula for the probabilities above.

Lemma 3.5. The following holds for any e 2 A and |A| > k:

P[e 2 ⇡x(A)] =
k � xe

|A| +
x(A \ e)

|A|(|A|� 1)
.

Proof.

P[e 2 ⇡x(A)] =
X

B⇢A
|B|=k
e2B

qA(B) =
X

B⇢A\e
|B|=k�1

qA(B [ e)

=
X

B⇢A\e
|B|=k�1

1⇣ |A|
k

⌘
✓
1 +

x(A \ e)� x(B)

|A|� k
� x(B) + xe

k

◆

=
X

B⇢A\e
|B|=k�1

1⇣ |A|
k

⌘
✓
1� xe

k
+

x(A \ e)
|A|� k

� x(B)

✓
1

|A|� k
+

1

k

◆◆

=
X

B⇢A\e
|B|=k�1

1⇣ |A|
k

⌘
✓
k � xe

k
+

x(A \ e)
|A|� k

� x(B)
|A|

k(|A|� k)

◆
. (3.45)

We now use Equation (3.2) in a slightly modified form:

X

B⇢A\e
|B|=k�1

x(B) =
⇣ |A|� 2

k � 2

⌘
x(A \ e). (3.46)

The only part in the sum (3.45) that depends on B is the last term with x(B). Hence, by plugging-in
(3.46) into (3.45), we get:

⇣ |A|
k

⌘
P[e 2 ⇡x(A)] =

⇣ |A|� 1

k � 1

⌘ ✓
k � xe

k

◆
+
⇣ |A|� 1

k � 1

⌘
x(A \ e)
|A|� k

�
⇣ |A|� 2

k � 2

⌘ |A|
k(|A|� k)

x(A \ e).

(3.47)
We now use the formula

✓
n

k

◆
=

n

k

✓
n� 1

k � 1

◆
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to remove all the binomial coe�cients from (3.47). We thus get:

|A|
k

P[e 2 ⇡x(A)] =
k � xe

k
+

x(A \ e)
|A|� k

� k � 1

|A|� 1

|A|
k(|A|� k)

x(A \ e)

=
k � xe

k
+

x(A \ e)
|A|� k

✓
1� |A|(k � 1)

(|A|� 1)k

◆

=
k � xe

k
+

x(A \ e)
k(|A|� 1)

.

This implies the desired result:

P[e 2 ⇡x(A)] =
k � xe

|A| +
x(A \ e)

|A|(|A|� 1)
.

We can now prove Theorem 3.5.

Proof of Theorem 3.5. Let A ⇢ N and e 2 A. If |A|  k, then

P[e 2 ⇡x(A)] = 1

and the theorem trivially holds. We therefore suppose that |A| > k. In order to prove the theorem,
it is clearly enough to show that for any f /2 A,

P[e 2 ⇡x(A)] � P[e 2 ⇡x(A [ f)]. (3.48)

We show the di↵erence of those two terms is greater than 0 by using Lemma 3.5 for both terms:

P[e 2 ⇡x(A)]� P[e 2 ⇡x(A [ f)] =
k � xe

|A| +
x(A \ e)

|A|(|A|� 1)
� k � xe

|A|+ 1
� x(A \ e) + xf

(|A|+ 1)|A|

=
k � xe

|A| �
k � xe

|A|+ 1
� xf

(|A|+ 1)|A| + x(A \ e)
✓

1

|A|(|A|� 1)
� 1

(|A|+ 1)|A|

◆

=
(|A|+ 1)(k � xe)� |A|(k � xe)� xf

|A|(|A|+ 1)
+

2x(A \ e)
(|A|2 � 1)|A|

=
k � xe � xf

|A|(|A|+ 1)
+

2x(A \ e)
(|A|2 � 1)|A|

� 0.

The last inequality holds because since x 2 PI = {x 2 [0, 1]N | x(N)  k}, we have

xe + xf  k,

and all the other terms are positive. We have thus shown (3.48) which is enough to prove the
theorem.
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4 An optimal monotone contention resolution scheme for

partition matroids

4.1 The CR scheme

The CR scheme for uniform matroids defined in Algorithm 3.1 can be naturally extended to a CR
scheme for partition matroids. This is not surprising since partition matroids can be seen as a direct
sum of uniform matroids.

We define the framework for a partition matroid M = (N, I).

• N = {1, . . . , n} is the ground set and it admits the partition N = D1 t · · · tDk. Moreover,
each set Di (called a block of the partition matroid) has an associated integer di 2 Z�0, called
the capacity of the block.

• I =
n
A ⇢ N | |A \Di|  di 8i 2 {1, . . . , k}

o
are the independent sets.

• PI =
n
x 2 [0, 1]N | x(Di)  di 8i 2 {1, . . . , k}

o
is the matroid polytope.

Notice that, for every i, the restriction of the partition matroid to a subset Di is a uniform matroid,
i.e.

M|Di = U(di, |Di|) 8i 2 {1, . . . , k} (4.1)

where U(k, n) := U
k
n is the uniform matroid of rank k on n elements.

We fix the following convenient notations:

• P
(i)
I = {y 2 [0, 1]Di | y(Di)  di} is the matroid polytope of the uniform matroid M|Di .

Notice that P (i)
I is the canonical projection of PI onto the Di coordinates.

• For any x 2 PI , we denote by x
(i) := x|Di the restriction of x to the Di coordinates. Notice

then that x(i) 2 P
(i)
I .

We remind the following definitions that we already used for uniform matroids. For any B ⇢ A ⇢ N ,

qA(B) :=
1⇣ |A|
|B|

⌘
⇣
1 + x̄(A \B)� x̄(B)

⌘
(4.2)

and
pA(B) :=

Y

i2B

xi

Y

i2A\B

(1� xi) = P[RA(x) = B], (4.3)

where RA(x) is the random set obtained by rounding each coordinate of x|A to 1 with probability
xi. In other words, RA(x) = R(x) \A. Of course, RN (x) is simply equal to the standard R(x).

We denote by

c(k, n) := 1�
✓
n

k

◆ ✓
1� k

n

◆n+1�k ✓
k

n

◆k

(4.4)

the optimal balancedness for Uk
n , the uniform matroid of rank k on n elements.

The main result of this section is the following.
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Algorithm 4.1 CR Scheme ⇡ for partition matroids

Input: A point x 2 PI and a set A ⇢ supp(x)
Output: An independent set I 2 I such that I ⇢ A.

I  ;
for i 2 {1, ..., k} do

Set Ai  A \Di

if |Ai|  di then

I  I [Ai

else

Pick any B ⇢ Ai of size |B| = di with probability qAi(B)
I  I [B

return I

1 2 3

4 5 6

7 8 9

A

D1 D2

D3

1 2 3

4 5 6

7 8 9

⇡x(A)

D1 D2

D3

⇡x

Figure 9: An example run of the CR scheme with d1 = 2, d2 = 1, d3 = 1

Theorem 4.1. Algorithm 4.1 is a c-balanced CR scheme for the partition matroid M =
(N, I), where

c = min
i2{1,...,k}

c(di, |Di|)

Proof. Let e 2 N . We need to show that for every x 2 PI with xe > 0,

P[e 2 ⇡x(R(x)) | e 2 R(x)] � min
i2{1,...,k}

c(di, |Di|).

This is equivalent to showing that for every x 2 PI with xe > 0,

P[e /2 ⇡x(R(x)) | e 2 R(x)]  max
i2{1,...,k}

✓
|Di|
di

◆ ✓
1� di

|Di|

◆|Di|+1�di
✓

di

|Di|

◆di

. (4.5)

Since all the Di’s form a partition of N , we let j 2 {1, . . . , k} be the unique index such that e 2 Dj .
We compute:
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P[e /2 ⇡x(R(x)) | e 2 R(x)] =
1

xe
P[e /2 ⇡x(R(x)), e 2 R(x), |RDj (x)| > dj ]

=
1

xe
P[e /2 ⇡x(R(x)), e 2 RDj (x), |RDj (x)| > dj ]

=
1

xe

X

A⇢Dj\e
|A|�dj

P[e /2 ⇡x(R(x)), RDj (x) = A [ e]

=
1

xe

X

A⇢Dj\e
|A|�dj

P[e /2 ⇡x(R(x)) | RDj (x) = A [ e] P[RDj (x) = A [ e]

=
X

A⇢Dj\e
|A|�dj

pDj (A [ e)

xe
P[e /2 ⇡x(R(x)) | RDj (x) = A [ e]

=
X

A⇢Dj\e
|A|�dj

pDj\e(A)
X

B⇢A
|B|=dj

qA[e(B) = G(x). (4.6)

Note that this is exactly the function G(x) that we defined for uniform matroids in (3.7). The
only di↵erence being that our uniform matroid is now on the ground set Dj (instead of N) and
of rank dj (instead of k). We do not explicitly write down the dependence on the ground set and
the rank in the definition of G(x) for simplicity of notation. Moreover, notice that expression (4.6)
only depends on the x-variables in Dj . Hence, because of Theorem 3.2, we get:

max{G(x) | x 2 PI} = max{G(x) | x 2 P
(j)
I } =

✓
|Dj |
dj

◆ ✓
1� dj

|Dj |

◆|Dj |+1�dj
✓

dj

|Dj |

◆dj

(4.7)

We therefore get the desired result: for any x 2 PI and e 2 supp(x),

P[e /2 ⇡x(R(x)) | e 2 R(x)]  max
i2{1,...,k}

✓
|Di|
di

◆ ✓
1� di

|Di|

◆|Di|+1�di
✓

di

|Di|

◆di

which is indeed what we wanted to show in (4.5).

4.2 Optimality

We now show that this factor is optimal. Again, this follows naturally from the proof of the uniform
matroid case.

Theorem 4.2. There does not exist a c-balanced CR scheme for the partition matroid M
satisfying:

c > min
i2{1,...,k}

c(di, |Di|)
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Proof. Let ⇡ be an arbitrary c-balanced CR scheme for the partition matroid M. We take j 2
argmin{i21,...,k}c(di, |Di|) and define the point x 2 PI by

xe =

(
dj/|Dj | if e 2 Dj .

0 otherwise.

As usual, we let R(x) be the random set obtained by rounding independently each coordinate of x
to one with probability xe. Moreover, we denote by I := ⇡x(R(x)) the independent set returned by
the CR scheme ⇡. We have

c dj =
X

e2Dj

c xe =
X

e2N

c xe 
X

e2N

P[e 2 I] = E[|I|]  E[r(R(x))]. (4.8)

Moreover, notice that by our choice of the point x 2 PI , we have

E[r(R(x))] = E
h
r
�
RDj (x

(j))
�i
.

Hence, by Theorem 3.4, we get that

E[r(R(x))] = dj

 
1�

✓
|Dj |
dj

◆ ✓
1� dj

|Dj |

◆|Dj |+1�dj
✓

dj

|Dj |

◆dj
!
. (4.9)

Plugging, (4.9) into (4.8), we obtain the desired result:

c  c(dj , |Dj |) = min
i2{1,...,k}

c(di, |Di|).

4.3 Monotonicity

We prove in this subsection that the CR scheme for partition matroids is monotone. Once again,
this follows from the result about monotonicity for uniform matroids: Theorem 3.5.

Theorem 4.3. Algorithm 4.1 is a monotone CR scheme for the partition matroid M, i.e.
for every x 2 PI and e 2 A ⇢ B ⇢ supp(x),

P[e 2 ⇡x(A)] � P[e 2 ⇡x(B)].

Proof. We let x 2 PI , let e 2 A ⇢ B and let j 2 {1, . . . , k} be the unique index such that e 2 Dj .
We denote in this proof the CR scheme applied to the partition matroid M (Algorithm 4.1) by ⇡x.
Moreover, we denote the CR scheme applied to the uniform matroid of rank dj on the ground set
Dj (Algorithm 3.1) by ⇢x.

We denote Aj := A\Dj and Bj := B \Dj . By construction of both algorithms, it is clear that

P[e 2 ⇡x(A)] = P[e 2 ⇢x(Aj)]
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and
P[e 2 ⇡x(B)] = P[e 2 ⇢x(Bj)].

Moreover, since Aj ⇢ Bj , by Theorem 3.5:

P[e 2 ⇢x(Aj)] � P[e 2 ⇢x(Bj)],

which implies the desired result by the previous two equalities:

P[e 2 ⇡x(A)] � P[e 2 ⇡x(B)].
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5 Conclusion and outlook

To sum up, we have in this thesis looked at the problem of designing contention resolution schemes
for di↵erent matroids. The goal was to try to improve the balancedness of 1 � 1/e provided for a
general matroid in [5]. We have managed to do that for three cases: matroids with disjoint circuits,
uniform matroids and partition matroids.

We provide in Section 2 an optimal monotone CR scheme for matroids with disjoint circuits
with a balancedness factor of 1� 1

g (1�
1
g )

g�1. The idea of the algorithm is quite simple: we check

which cycles are completely included in the random set R(x). For these cycles, we remove one
element randomly from each of them with a probability that depends on the input point x 2 PI .
The proof for the balancedness is a consequence of the arithmetic-geometric mean inequality. We
then prove optimality of this balancedness, as well as monotonicity of the scheme. We also discuss
a couple of interesting applications to graphic matroids.

In Section 3, we design an optimal monotone CR scheme for any uniform matroid of rank k

on n elements. The balancedness of this scheme is 1 �
�n
k

� �
1� k

n

�n+1�k � k
n

�k
:= c(k, n), which

generalizes the known optimal balancedness for the uniform matroid of rank one of 1� (1� 1/n)n.
Asymptotically, c(k, n)

n!1����! 1�e
�k

k
k
/k!, which also generalizes the asymptotic 1�1/e for k = 1.

The idea is again quite simple: we simply check whether the random set R(x) has more than k

elements and keep k of those randomly with a probability which depends on the input point x 2 PI .
The proof of the balancedness is non-trivial and the main idea consists of looking at the complement
probability P[e /2 ⇡x(R(x)) | e 2 R(x)], rewriting it as a function of n variables, and maximizing this
multivariable function over the uniform matroid polytope PI . We first maximize over the variable
xe while keeping all the other variables fixed. We then get an expression of n � 1 variables and
maximize that by simply finding the unique extremum (which is a local maximum) in the interior
of the domain, and finally checking that any point in the boundary has a lower function value than
that point. We also provide a proof of optimality for the balancedness which surprisingly uses a
result that we found during the second step of the maximization problem discussed above. Finally,
we also show the CR scheme is monotone.

In Section 4, we show that we can generalize the CR scheme we constructed for uniform ma-
troids to partition matroids. The arguments all follow quite naturally and the balancedness is of
mini c(di, |Di|), where the Di’s are the blocks of the partition matroid with each Di having capacity
di. The scheme turns out to be optimal and monotone in this case as well.

The idea of designing CR schemes by assigning a certain probability depending on the input
point x 2 PI to every independent subset of the input set is the central idea of every CR scheme in
this thesis. It might be possible to use that idea to design other CR schemes for di↵erent matroids,
or even di↵erent independence families. All the proofs of optimality also follow the same basic
principle and a generalization ot that argument to other matroids might be something doable as
well.
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A Appendix

We give here the computations (Lemma A.1 and Lemma A.2) that allow us to compute the Hessian
matrix

H(x)i,j =
@
2
h
k
S(x)

@xi@xj
.

at the point (k/n, . . . , k/n) of the function

h
k
S(x) =

X

A⇢S
|A|=k

pS(A)(k � x(A)).

These two results were used for the proof of Proposition 3.2.
Note that we have already computed in (3.29) that

@h
k
S(x)

@xi
= Q

k�1
S\i (x)

⇣
k � x(S)� xi

⌘
8i 2 S. (A.1)

where
Q

k
S(x) :=

X

A⇢S,|A|=k

pS(A).

A useful and straightforward computation is the following:

Q
l
S(k/n, . . . , k/n) =

✓
n� 1

l

◆✓
k

n

◆l ✓
n� k

n

◆n�1�l

. (A.2)

Lemma A.1. The diagonal terms of the Hessian matrix at the point (k/n, . . . , k/n) satisfy:

@
2
h
k
S

@x
2
i

(k/n, . . . , k/n) = �2
✓
n� 2

k � 1

◆✓
k

n

◆k�1✓
n� k

n

◆n�k�1

8i 2 S.

Proof. Since the term Q
k�1
S\i (x) in (A.1) does not depend on xi, we easily derive:

@
2
h
k
S(x)

@x
2
i

= �2Qk�1
S\i (x) 8i 2 S. (A.3)

Therefore, by (A.2), evaluating expression (A.3) at the point (k/n, . . . , k/n) gives us:

@
2
h
k
S

@x
2
i

(k/n, . . . , k/n) = �2
✓
n� 2

k � 1

◆✓
k

n

◆k�1✓
n� k

n

◆n�k�1

8i 2 S.

Lemma A.2. The non-diagonal terms of the Hessian matrix at the point (k/n, . . . , k/n) satisfy:

@
2
h
k
S

@xi@xj
(k/n, . . . , k/n) = �

✓
n� 2

k � 1

◆✓
k

n

◆k�1✓
n� k

n

◆n�k�1

for i 6= j (A.4)
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Proof. We first show that

Q
k�1
S\i (x) = xj Q

k�2
S\i,j(x) + (1� xj)Q

k�1
S\i,j(x). (A.5)

Indeed,

Q
k�1
S\i (x) =

X

A⇢S\i
|A|=k�1

pS\i(A)

=
X

A⇢S\i
|A|=k�1

j2A

pS\i(A) +
X

A⇢S\i
|A|=k�1

j /2A

pS\i(A)

= xj

X

A⇢S\i
|A|=k�1

j2A

pS\i(A \ j) + (1� xj)
X

A⇢S\i
|A|=k�1

j /2A

pS\i,j(A)

= xj

X

B⇢S\i,j
|B|=k�2

pS\i,j(B) + (1� xj)
X

A⇢S\i,j
|A|=k�1

pS\i,j(A)

= xj Q
k�2
S\i,j(x) + (1� xj)Q

k�1
S\i,j(x).

We can therefore compute the non-diagonal terms of H(x) by (A.1) and (A.5). For i 6= j,

@
2
h
k
S(x)

@xj@xi
=
⇣
Q

k�2
S\i,j(x)�Q

k�1
S\i,j(x)

⌘
(k � x(S)� xi)�Q

k�1
S\i (x)

=
⇣
Q

k�2
S\i,j(x)�Q

k�1
S\i,j(x)

⌘
(k � x(S)� xi)� xj Q

k�2
S\i,j(x)� (1� xj)Q

k�1
S\i,j(x)

= Q
k�2
S\i,j(x)

⇣
k � x(S)� xi � xj

⌘
�Q

k�1
S\i,j(x)

⇣
k + 1� x(S)� xi � xj

⌘
.

We can now evaluate the last expression at the point (k/n, . . . , k/n) with (A.2):

@
2
h
k
S

@x
2
i

(k/n, . . . , k/n) = �
✓
n� 3

k � 2

◆✓
k

n

◆k�1 ✓
n� k

n

◆n�k�1

�
✓
n� 3

k � 1

◆✓
k

n

◆k�1 ✓
n� k

n

◆n�k�1

= �
✓
k

n

◆k�1 ✓
n� k

n

◆n�k�1✓✓
n� 3

k � 2

◆
+

✓
n� 3

k � 1

◆◆

= �
✓
n� 2

k � 1

◆✓
k

n

◆k�1✓
n� k

n

◆n�k�1

.
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